Projects per year
Abstract
A rate-independent evolution problem is considered for which the stored energy density depends on the gradient of the displacement. The stored energy density does not have to be quasiconvex and is assumed to exhibit linear growth at infinity; no further assumptions are made on the behaviour at infinity. We analyse an evolutionary process with positively 1-homogeneous dissipation and time-dependent Dirichlet boundary conditions.
Original language | English |
---|---|
Pages (from-to) | 591-604 |
Number of pages | 14 |
Journal | Discrete and Continuous Dynamical Systems Series S |
Volume | 5 |
Issue number | 3 |
DOIs | |
Publication status | Published - Jun 2012 |
Fingerprint
Dive into the research topics of 'Rate-independent processes with linear growth energies and time-dependent boundary conditions'. Together they form a unique fingerprint.Projects
- 1 Finished
-
MATHEMATICAL ANALYSIS OF OF THE STATIC AND DYNAMIC BEHAVIOUR OF MATERIALS - ADVANCED RESEARCH FELLOWSHIP
Zimmer, J. (PI)
Engineering and Physical Sciences Research Council
1/10/04 → 30/09/09
Project: Research council