TY - JOUR
T1 - Rapid identification of Zygosaccharomyces with genus-specific primers
AU - Hulin, Michelle
AU - Wheals, Alan
PY - 2014/3/3
Y1 - 2014/3/3
N2 - There has been a recent and rapid increase in the number of species of the genus Zygosaccharomyces which now comprises Z. bailii, Z. bisporus, Z. gambellarensis, Z. kombuchaensis, Z. lentus, Z. machadoi, Z. mellis, Z. parabaillii, Z. pseudobailii, Z. pseudorouxii, Z. rouxii, Z. sapae, and Z. siamensis. Z. pseudorouxii is an unofficial name given to isolates closely related to the newly-described species Z. sapae. The Zygosaccharomyces genus contains species that are important as food and beverage spoilage organisms and others are associated with fermentations and sweet foodstuffs, such as honey. Their economic significance means that the ability to identify them rapidly is of significant importance. Although Z. rouxii and Z. bailii have been genome-sequenced the extent of sequence data for the others, especially the newly-discovered species, is sometimes extremely limited which makes identification slow. However, parts of the ITS1/5.8S/ITS2 rDNA region contain sequences of sufficient similarity within the genus and of sufficient difference with outgroups, to be potential regions for the design of genus-wide specific primers. We report here the development of genus-specific primers that can detect all the major Zygosaccharomyces species including all those associated with foods; the rare and localised species Z. machadoi and Z. gambellarensis are not detected. The size of the single amplicon produced varies between species and in some cases is sufficiently different to assign provisional species identification. Sequence data from rDNA regions are available for virtually all described yeast species in all genera, thus, prior to having sufficient sequence data from structural genes, rDNA regions may provide more generally suitable candidates for both genus-specific and species-specific primer design.
AB - There has been a recent and rapid increase in the number of species of the genus Zygosaccharomyces which now comprises Z. bailii, Z. bisporus, Z. gambellarensis, Z. kombuchaensis, Z. lentus, Z. machadoi, Z. mellis, Z. parabaillii, Z. pseudobailii, Z. pseudorouxii, Z. rouxii, Z. sapae, and Z. siamensis. Z. pseudorouxii is an unofficial name given to isolates closely related to the newly-described species Z. sapae. The Zygosaccharomyces genus contains species that are important as food and beverage spoilage organisms and others are associated with fermentations and sweet foodstuffs, such as honey. Their economic significance means that the ability to identify them rapidly is of significant importance. Although Z. rouxii and Z. bailii have been genome-sequenced the extent of sequence data for the others, especially the newly-discovered species, is sometimes extremely limited which makes identification slow. However, parts of the ITS1/5.8S/ITS2 rDNA region contain sequences of sufficient similarity within the genus and of sufficient difference with outgroups, to be potential regions for the design of genus-wide specific primers. We report here the development of genus-specific primers that can detect all the major Zygosaccharomyces species including all those associated with foods; the rare and localised species Z. machadoi and Z. gambellarensis are not detected. The size of the single amplicon produced varies between species and in some cases is sufficiently different to assign provisional species identification. Sequence data from rDNA regions are available for virtually all described yeast species in all genera, thus, prior to having sufficient sequence data from structural genes, rDNA regions may provide more generally suitable candidates for both genus-specific and species-specific primer design.
UR - http://www.scopus.com/inward/record.url?scp=84891090464&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1016/j.ijfoodmicro.2013.12.009
U2 - 10.1016/j.ijfoodmicro.2013.12.009
DO - 10.1016/j.ijfoodmicro.2013.12.009
M3 - Article
SN - 0168-1605
VL - 173
SP - 9
EP - 13
JO - International Journal of Food Microbiology
JF - International Journal of Food Microbiology
ER -