Abstract
The gallium-68 radiolabelling of new functional graphene oxide composites is reported herein along with kinetic stability investigations of the radio-nanohybrids under different environments and insights into their surface characteristics by SEM and XPS. The present work highlights the potential of graphene oxides as nanocarriers for small molecules such as bis(thiosemicarbazonato) complexes to act as multifunctional platforms for rapid and effective radioimaging agent incorporation.
Original language | English |
---|---|
Pages (from-to) | 6603-6608 |
Number of pages | 6 |
Journal | Nanoscale |
Volume | 12 |
Issue number | 12 |
Early online date | 17 Mar 2020 |
DOIs | |
Publication status | Published - 28 Mar 2020 |
Funding
The S. I. P. group thanks the Centre for Doctoral Training in Sustainable Chemical Technologies (EP/L016354/1). SIP also acknowledges the EU funding through the ERC for the Consolidator Grant O2SENSE (617107, 2014–2020). The authors thank EPSRC National Service for Mass Spectrometry at Swansea and for data collection. We thank Professor Stan Botchway for training in confocal fluorescence microscopy and Professor Jon Dilworth for helpful discussions in the radiochemistry of bis(thiosemicarbazones). The EOA group acknowledges support from Imperial College NIHR Biomedical Research Centre, Cancer Research UK (C2536/A16584) and the UK Medical Research Council (MR/J007986/1). D. G. C. also acknowledges the Fundación General CSIC (ComFuturo Program) for the financial support and F. J. P. the Spanish Ministry of Economy and Competitiveness (MINECO) (MAT2016-80394-R).
ASJC Scopus subject areas
- General Materials Science