TY - JOUR
T1 - Quiver flag varieties and multigraded linear series
AU - Craw, Alastair
PY - 2011/2/15
Y1 - 2011/2/15
N2 - This paper introduces a class of smooth projective varieties that generalise and share many properties with partial flag varieties of type A. The quiver flag variety M_\vartheta(Q,r) of a finite acyclic quiver Q (with a unique source) and a dimension vector r is a fine moduli space of stable representations of Q. Quiver flag varieties are Mori Dream Spaces, they are obtained via a tower of Grassmann bundles, and their bounded derived category of coherent sheaves is generated by a tilting bundle. We define the multigraded linear series of a weakly exceptional sequence of locally free sheaves E = (O_X,E_1,...,E_\rho) on a projective scheme X to be the quiver flag variety |E| = M_\vartheta(Q,r) of a pair (Q,r) encoded by E. When each E_i is globally generated, we obtain a morphism \phi_|E| : X -> |E| realising each E_i as the pullback of a tautological bundle. As an application we introduce the multigraded Plucker embedding of a quiver flag variety
AB - This paper introduces a class of smooth projective varieties that generalise and share many properties with partial flag varieties of type A. The quiver flag variety M_\vartheta(Q,r) of a finite acyclic quiver Q (with a unique source) and a dimension vector r is a fine moduli space of stable representations of Q. Quiver flag varieties are Mori Dream Spaces, they are obtained via a tower of Grassmann bundles, and their bounded derived category of coherent sheaves is generated by a tilting bundle. We define the multigraded linear series of a weakly exceptional sequence of locally free sheaves E = (O_X,E_1,...,E_\rho) on a projective scheme X to be the quiver flag variety |E| = M_\vartheta(Q,r) of a pair (Q,r) encoded by E. When each E_i is globally generated, we obtain a morphism \phi_|E| : X -> |E| realising each E_i as the pullback of a tautological bundle. As an application we introduce the multigraded Plucker embedding of a quiver flag variety
UR - http://www.scopus.com/inward/record.url?scp=79951571884&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1215/00127094-2010-217
U2 - 10.1215/00127094-2010-217
DO - 10.1215/00127094-2010-217
M3 - Article
SN - 0012-7094
VL - 156
SP - 469
EP - 500
JO - Duke Mathematical Journal
JF - Duke Mathematical Journal
IS - 3
ER -