Quasilinear SPDEs via Rough Paths

Felix Otto, Hendrik Weber

Research output: Contribution to journalArticle

3 Citations (Scopus)

Abstract

We are interested in (uniformly) parabolic PDEs with a nonlinear dependence of the leading-order coefficients, driven by a rough right hand side. For simplicity, we consider a space-time periodic setting with a single spatial variable: ∂2u−P(a(u)∂21u+σ(u)f)=0, where P is the projection on mean-zero functions, and f is a distribution which is only controlled in the low regularity norm of Cα−2 for α>23 on the parabolic Hölder scale. The example we have in mind is a random forcing f and our assumptions allow, for example, for an f which is white in the time variable x2 and only mildly coloured in the space variable x1; any spatial covariance operator (1+|∂1|)−λ1 with λ1>13 is admissible. On the deterministic side we obtain a Cα-estimate for u, assuming that we control products of the form v∂21v and vf with v solving the constant-coefficient equation ∂2v−a0∂21v=f. As a consequence, we obtain existence, uniqueness and stability with respect to (f,vf,v∂21v) of small space-time periodic solutions for small data. We then demonstrate how the required products can be bounded in the case of a random forcing f using stochastic arguments. For this we extend the treatment of the singular product σ(u)f via a space-time version of Gubinelli’s notion of controlled rough paths to the product a(u)∂21u, which has the same degree of singularity but is more nonlinear since the solution u appears in both factors. In fact, we develop a theory for the linear equation ∂tu−P(a∂21u+σf)=0 with rough but given coefficient fields a and σ and then apply a fixed point argument. The PDE ingredient mimics the (kernel-free) Safonov approach to ordinary Schauder theory.
Original languageEnglish
Pages (from-to)873-950
Number of pages78
JournalArchive for Rational Mechanics and Analysis
Volume232
Issue number2
Early online date30 Nov 2018
DOIs
Publication statusPublished - 1 May 2019

Cite this

Quasilinear SPDEs via Rough Paths. / Otto, Felix; Weber, Hendrik.

In: Archive for Rational Mechanics and Analysis, Vol. 232, No. 2, 01.05.2019, p. 873-950.

Research output: Contribution to journalArticle

@article{454c3556f37849b5b5659c910c0166eb,
title = "Quasilinear SPDEs via Rough Paths",
abstract = "We are interested in (uniformly) parabolic PDEs with a nonlinear dependence of the leading-order coefficients, driven by a rough right hand side. For simplicity, we consider a space-time periodic setting with a single spatial variable: ∂2u−P(a(u)∂21u+σ(u)f)=0, where P is the projection on mean-zero functions, and f is a distribution which is only controlled in the low regularity norm of Cα−2 for α>23 on the parabolic H{\"o}lder scale. The example we have in mind is a random forcing f and our assumptions allow, for example, for an f which is white in the time variable x2 and only mildly coloured in the space variable x1; any spatial covariance operator (1+|∂1|)−λ1 with λ1>13 is admissible. On the deterministic side we obtain a Cα-estimate for u, assuming that we control products of the form v∂21v and vf with v solving the constant-coefficient equation ∂2v−a0∂21v=f. As a consequence, we obtain existence, uniqueness and stability with respect to (f,vf,v∂21v) of small space-time periodic solutions for small data. We then demonstrate how the required products can be bounded in the case of a random forcing f using stochastic arguments. For this we extend the treatment of the singular product σ(u)f via a space-time version of Gubinelli’s notion of controlled rough paths to the product a(u)∂21u, which has the same degree of singularity but is more nonlinear since the solution u appears in both factors. In fact, we develop a theory for the linear equation ∂tu−P(a∂21u+σf)=0 with rough but given coefficient fields a and σ and then apply a fixed point argument. The PDE ingredient mimics the (kernel-free) Safonov approach to ordinary Schauder theory.",
author = "Felix Otto and Hendrik Weber",
year = "2019",
month = "5",
day = "1",
doi = "10.1007/s00205-018-01335-8",
language = "English",
volume = "232",
pages = "873--950",
journal = "Archive for Rational Mechanics and Analysis",
issn = "0003-9527",
publisher = "Springer New York",
number = "2",

}

TY - JOUR

T1 - Quasilinear SPDEs via Rough Paths

AU - Otto, Felix

AU - Weber, Hendrik

PY - 2019/5/1

Y1 - 2019/5/1

N2 - We are interested in (uniformly) parabolic PDEs with a nonlinear dependence of the leading-order coefficients, driven by a rough right hand side. For simplicity, we consider a space-time periodic setting with a single spatial variable: ∂2u−P(a(u)∂21u+σ(u)f)=0, where P is the projection on mean-zero functions, and f is a distribution which is only controlled in the low regularity norm of Cα−2 for α>23 on the parabolic Hölder scale. The example we have in mind is a random forcing f and our assumptions allow, for example, for an f which is white in the time variable x2 and only mildly coloured in the space variable x1; any spatial covariance operator (1+|∂1|)−λ1 with λ1>13 is admissible. On the deterministic side we obtain a Cα-estimate for u, assuming that we control products of the form v∂21v and vf with v solving the constant-coefficient equation ∂2v−a0∂21v=f. As a consequence, we obtain existence, uniqueness and stability with respect to (f,vf,v∂21v) of small space-time periodic solutions for small data. We then demonstrate how the required products can be bounded in the case of a random forcing f using stochastic arguments. For this we extend the treatment of the singular product σ(u)f via a space-time version of Gubinelli’s notion of controlled rough paths to the product a(u)∂21u, which has the same degree of singularity but is more nonlinear since the solution u appears in both factors. In fact, we develop a theory for the linear equation ∂tu−P(a∂21u+σf)=0 with rough but given coefficient fields a and σ and then apply a fixed point argument. The PDE ingredient mimics the (kernel-free) Safonov approach to ordinary Schauder theory.

AB - We are interested in (uniformly) parabolic PDEs with a nonlinear dependence of the leading-order coefficients, driven by a rough right hand side. For simplicity, we consider a space-time periodic setting with a single spatial variable: ∂2u−P(a(u)∂21u+σ(u)f)=0, where P is the projection on mean-zero functions, and f is a distribution which is only controlled in the low regularity norm of Cα−2 for α>23 on the parabolic Hölder scale. The example we have in mind is a random forcing f and our assumptions allow, for example, for an f which is white in the time variable x2 and only mildly coloured in the space variable x1; any spatial covariance operator (1+|∂1|)−λ1 with λ1>13 is admissible. On the deterministic side we obtain a Cα-estimate for u, assuming that we control products of the form v∂21v and vf with v solving the constant-coefficient equation ∂2v−a0∂21v=f. As a consequence, we obtain existence, uniqueness and stability with respect to (f,vf,v∂21v) of small space-time periodic solutions for small data. We then demonstrate how the required products can be bounded in the case of a random forcing f using stochastic arguments. For this we extend the treatment of the singular product σ(u)f via a space-time version of Gubinelli’s notion of controlled rough paths to the product a(u)∂21u, which has the same degree of singularity but is more nonlinear since the solution u appears in both factors. In fact, we develop a theory for the linear equation ∂tu−P(a∂21u+σf)=0 with rough but given coefficient fields a and σ and then apply a fixed point argument. The PDE ingredient mimics the (kernel-free) Safonov approach to ordinary Schauder theory.

U2 - 10.1007/s00205-018-01335-8

DO - 10.1007/s00205-018-01335-8

M3 - Article

VL - 232

SP - 873

EP - 950

JO - Archive for Rational Mechanics and Analysis

JF - Archive for Rational Mechanics and Analysis

SN - 0003-9527

IS - 2

ER -