Water splitting by thermal cycling of a pyroelectric element that acts as an external charge source offers an alternative method to produce hydrogen from transient low-grade waste heat or natural temperature changes. In contrast to conventional energy harvesting, where the optimised load resistance is used to maximise the combination of current and voltage, for water splitting applications there is a need to optimise the system to achieve a sufficiently high potential difference for water electrolysis, whilst also maintaining a high current output. For the thermal harvesting system examined here, a high impedance 0.5 M KOH electrolyte with working electrodes connected to a rectified pyroelectric harvester produced the highest voltage of 2.34 V, which was sufficient for H2 generation. In addition to electrolyte concentration, the frequency of the temperature oscillations was examined and reducing the heating-cooling frequency led to a larger change in temperature to generate increased pyroelectric charge and a higher potential difference for pyro-water splitting. Finally, in the absence of sacrificial reagents, cyclic production of H2 (0.654 μmol/h) was demonstrated for the optimised processing parameters of electrolyte and thermal cycling frequency using the external pyroelectric element as a charge source for water splitting.
Original languageEnglish
Pages (from-to)183-191
Number of pages8
JournalNano Energy
Early online date14 Jan 2019
Publication statusPublished - 1 Apr 2019


Dive into the research topics of 'Pyro-electrolytic water splitting for hydrogen generation'. Together they form a unique fingerprint.

Cite this