Abstract
For a finite subgroup $\Gamma\subset \mathrm{SL}(2,\mathbb{C})$ and $n\geq 1$, we construct the (reduced scheme underlying the) Hilbert scheme of $n$ points on the Kleinian singularity $\mathbb{C}^2/\Gamma$ as a Nakajima quiver variety for the framed McKay quiver of $\Gamma$, taken at a specific non-generic stability parameter. We deduce that this Hilbert scheme is irreducible (a result previously due to Zheng), normal, and admits a unique symplectic resolution. More generally, we introduce a class of algebras obtained from the preprojective algebra of the framed McKay quiver by a process called cornering, and we show that fine moduli spaces of cyclic modules over these new algebras are isomorphic to quiver varieties for the framed McKay quiver and certain non-generic choices of stability parameter.
Original language | English |
---|---|
Number of pages | 22 |
Journal | arXiv |
Publication status | Submitted - 29 Oct 2019 |
Keywords
- math.AG
- math.RT