Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms

N. T. Thet, D. R. Alves, J. E. Bean, S. Booth, J. Nzakizwanayo, A. E. R. Young, Brian V. Jones, A. Toby A. Jenkins

Research output: Contribution to journalArticlepeer-review

101 Citations (SciVal)
978 Downloads (Pure)

Abstract

The early detection of wound infection in-situ can dramatically improve patient care pathways and clinical outcomes. There is increasing evidence that within an infected wound the main bacterial mode of living is a biofilm: a confluent community of adherent bacteria encased in an extracellular polymeric matrix. Here we have reported the development of a prototype wound dressing, which switches on a fluorescent color when in contact with pathogenic wound biofilms. The dressing is made of a hydrated agarose film in which the fluorescent dye containing vesicles were mixed with agarose and dispersed within the hydrogel matrix. The static and dynamic models of wound biofilms, from clinical strains of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Enterococcus faecalis, were established on nano-porous polycarbonate membrane for 24, 48 and 72 hours, and the dressing response to the biofilms on the prototype dressing evaluated. The dressing indicated a clear fluorescent / color response within four hours, only observed when in contact with biofilms produced by a pathogenic strain. The sensitivity of the dressing to biofilms was dependent on the species and strain types of the bacterial pathogens involved, but a relatively higher response was observed in strains considered good biofilm formers. There was a clear difference in the levels of dressing response, when dressings were tested on bacteria grown in biofilm or in planktonic cultures, suggesting that the level of expression of virulence factors is different depending of the growth mode. Colorimetric detection on wound biofilms of prevalent pathogens (S. aureus, P. aeruginosa and E. faecalis) is also demonstrated using an ex-vivo porcine skin model of burn wound infection.
Original languageEnglish
Pages (from-to)14909-14919
Number of pages11
JournalACS Applied Materials and Interfaces
Volume8
Issue number24
Early online date22 Oct 2015
DOIs
Publication statusPublished - 22 Jun 2016

Keywords

  • Bandages
  • Biofilms
  • Humans
  • Hydrogel, Polyethylene Glycol Dimethacrylate
  • Pseudomonas aeruginosa
  • Staphylococcus aureus
  • Wound Infection

Fingerprint

Dive into the research topics of 'Prototype development of the intelligent hydrogel wound dressing and its efficacy in the detection of model pathogenic wound biofilms'. Together they form a unique fingerprint.

Cite this