Abstract
Background/purpose: Human skin is constantly exposed to ultraviolet A (UVA), which can generate reactive oxygen species and cause iron release from ferritin, leading to oxidative damage in biomolecules. This is particularly true in post-menopausal skin due to an increase in iron as a result of menopause. As iron is generally released through desquamation, the skin becomes a main portal for the release of excess iron in this age group. In the present study, we examined a strategy for controlling UVA- and iron-induced oxidative stress in skin using a keratinocyte post-menopausal cellular model system. Methods: Keratinocytes that had been cultured under normal or high-iron, low-estrogen conditions were treated with (2-nitrophenyl) ethyl pyridoxal isonicotinoyl hydrazone (2-PNE-PIH). 2-PNE-PIH is a caged-iron chelator that does not normally bind iron but can be activated by UVA radiation to bind iron. Following incubation with 2-PNE-PIH, the cells were exposed to 5 J/cm(2) UVA and then measured for changes in lipid peroxidation and ferritin levels. Results: 2-PNE-PIH protected keratinocytes against UVA-induced lipid peroxidation and ferritin depletion. Further, 2-PNE-PIH was neither cytotoxic nor did it alter iron metabolism. Conclusion: 2-PNE-PIH may be a useful deterrent against UVA-induced oxidative stress in postmenopausal women.
Original language | English |
---|---|
Pages (from-to) | 231-235 |
Number of pages | 5 |
Journal | Photodermatology Photoimmunology & Photomedicine |
Volume | 27 |
Issue number | 5 |
Early online date | 26 Sep 2011 |
DOIs | |
Publication status | Published - Oct 2011 |
Keywords
- keratinocytes
- chelator
- UVA
- iron
- post-menopausal