TY - JOUR
T1 - Processing of spherical crystalline particles via a novel solution atomization and crystallization by sonication (SAXS) technique
AU - Kaerger, J. Sebastian
AU - Price, Robert
N1 - ID number: ISI:000189012300021
PY - 2004/2
Y1 - 2004/2
N2 - Purpose. The objective was to develop a single-step pharmaceutical particle engineering technique able to produce particles within a well-defined particle size range while controlling macroscopic spherical morphology and mesoscopic surface topography. Methods. Paracetamol ( acetaminophen) aerosol droplets were generated by spraying a solution via either an electrohydrodynamic atomizer ( EHDA) or an air pressure atomizer. The highly supersaturated droplets were collected in a suitable nonsolvent of the drug and crystallized by ultrasonication. Suspended particles were filtered, and their physicochemical properties characterized. Results. The SAXS processed particles showed a relatively homogeneous particle size distribution between 1 and 5 mum. Particles were nominally crystalline in structure. The chemical structure of the active ingredient did not apparently alter during processing. Controlling the solute concentration of the air pressure atomized solution provided a means of controlling the degree of sphericity and particle-size characteristics. In comparison to micronized paracetamol particles, SAXS-produced particulates were generally more uniform in shape with increased nanometer surface roughness. Conclusions. The SAXS process provides a novel means of producing crystalline particles in a well-defined particle size range. Furthermore, the method offers a range of opportunities in controlling physical properties including surface topography and particle shape.
AB - Purpose. The objective was to develop a single-step pharmaceutical particle engineering technique able to produce particles within a well-defined particle size range while controlling macroscopic spherical morphology and mesoscopic surface topography. Methods. Paracetamol ( acetaminophen) aerosol droplets were generated by spraying a solution via either an electrohydrodynamic atomizer ( EHDA) or an air pressure atomizer. The highly supersaturated droplets were collected in a suitable nonsolvent of the drug and crystallized by ultrasonication. Suspended particles were filtered, and their physicochemical properties characterized. Results. The SAXS processed particles showed a relatively homogeneous particle size distribution between 1 and 5 mum. Particles were nominally crystalline in structure. The chemical structure of the active ingredient did not apparently alter during processing. Controlling the solute concentration of the air pressure atomized solution provided a means of controlling the degree of sphericity and particle-size characteristics. In comparison to micronized paracetamol particles, SAXS-produced particulates were generally more uniform in shape with increased nanometer surface roughness. Conclusions. The SAXS process provides a novel means of producing crystalline particles in a well-defined particle size range. Furthermore, the method offers a range of opportunities in controlling physical properties including surface topography and particle shape.
UR - http://dx.doi.org/10.1023/B:PHAM.0000016252.97296.f1
U2 - 10.1023/B:PHAM.0000016252.97296.f1
DO - 10.1023/B:PHAM.0000016252.97296.f1
M3 - Article
SN - 0724-8741
VL - 21
SP - 372
EP - 381
JO - Pharmaceutical Research
JF - Pharmaceutical Research
IS - 2
ER -