Abstract
A series of Cp*IrIII dimers has been synthesized to elucidate the mechanistic viability of radical oxo-coupling pathways in iridium-catalyzed O2 evolution. The oxidative stability of the precursors towards nanoparticle formation and their oxygen evolution activity have been investigated and compared to suitable monomeric analogs. We found that precursors bearing monodentate NHC ligands degraded to form nanoparticles (NPs), and accordingly their O2 evolution rates were not significantly influenced by their nuclearity or distance between the two metals in the dimeric precursors. A doubly chelating bis-pyridine-pyrazolide ligand provided an oxidation-resistant ligand framework that allowed a more meaningful comparison of catalytic performance of dimers with their corresponding monomers. With sodium periodate (NaIO4) as the oxidant, the dimers provided significantly lower O2 evolution rates per [Ir] than the monomer, suggesting a negative interaction instead of cooperativity in the catalytic cycle. Electrochemical analysis of the dimers further substantiates the notion that no radical oxyl-coupling pathways are accessible. We thus conclude that the alternative path, nucleophilic attack of water on high-valent Ir-oxo species, may be the preferred mechanistic pathway of water-oxidation with these catalysts, and bimolecular oxo-coupling is not a valid mechanistic alternative as in the related ruthenium chemistry, at least in the present system.
Original language | English |
---|---|
Pages (from-to) | 5384–5390 |
Journal | Organometallics |
Volume | 32 |
Issue number | 19 |
Early online date | 24 Sept 2013 |
DOIs | |
Publication status | Published - 14 Oct 2013 |