Abstract
Exercise improves insulin secretion by pancreatic beta cells (β-cells) in patients with type 2 diabetes, but molecular mechanisms of this effect are yet to be determined. Given that contracting skeletal muscle causes a spike in circulating interleukin-6 (IL-6) levels during exercise, muscle-derived IL-6 is a possible endocrine signal associated with skeletal muscle to β-cell crosstalk. Evidence to support a role of IL-6 in regulating the health and function of β-cells is currently inconsistent and studies investigating the role of IL-6 on the function of β-cells exposed to type 2 diabetic-like conditions are limited and often confounded by supraphysiological IL-6 concentrations. The purpose of this study is to explore the extent by which an exercise-relevant concentration of IL-6 influences the function of pancreatic β-cells exposed to type 2 diabetic-like conditions. Using insulin-secreting INS-1 832/3 cells as an experimental β-cell model, we show that 1-h IL-6 (10 pg/mL) has no effect on insulin secretion under normal conditions and does not restore the loss of insulin secretion caused by elevated glucose ± palmitate or IL-1β. Moreover, treatment of INS-1 832/3 cells to medium collected from C2C12 myotubes conditioned with electrical pulse stimulation does not alter insulin secretion despite significant increases in IL-6. Since insulin secretory defects caused by diabetic-like conditions are neither improved nor worsened by exposure to physiological IL-6 levels, we conclude that the beneficial effect of exercise on β-cell function is unlikely to be driven by muscle-derived IL-6.
Original language | English |
---|---|
Article number | 1924 |
Journal | International Journal of Molecular Sciences |
Volume | 19 |
Issue number | 7 |
DOIs | |
Publication status | Published - 30 Jun 2018 |
Keywords
- Animals
- Cell Line, Tumor
- Diabetes Mellitus, Type 2/metabolism
- Glucose/metabolism
- Insulin/metabolism
- Insulinoma/metabolism
- Interleukin-6/pharmacology
- Male
- Muscle, Skeletal/drug effects
- Physical Conditioning, Animal/physiology
- Rats