Abstract
Interaction-driven symmetry breaking in a metallic (doped) Dirac system can manifest in the spontaneous gap generation at the nodal point buried below the Fermi level. Across this transition linear conductivity remains finite, making its direct observation difficult in linear transport. We propose the nonlinear Hall effect as a direct probe of this transition when inversion symmetry is broken. Specifically, for a two-dimensional Dirac material with a tilted low-energy dispersion, we predict a transformation of the characteristic interband resonance peak into a non-Lorentzian form in the collisionless regime. Furthermore, we show that inversion-symmetry-breaking quantum phase transition is controlled by an exotic tilt-dependent line of critical points. As this line is approached from the ordered side, the nonlinear Hall conductivity is suppressed owing to the scattering between the strongly coupled incoherent fermionic and bosonic excitations. Our results should motivate further studies of nonlinear responses in strongly interacting Dirac materials.
Original language | English |
---|---|
Article number | 013069 |
Journal | Physical Review Research |
Volume | 2 |
Issue number | 1 |
DOIs | |
Publication status | Published - 23 Jan 2020 |
ASJC Scopus subject areas
- General Physics and Astronomy