Probing hysteresis during sorption of cyclohexane within mesoporous silica using NMR cryoporometry and relaxometry

Elenica Shiko, Karen J. Edler, John P. Lowe, Sean P. Rigby

Research output: Contribution to journalArticlepeer-review

8 Citations (SciVal)


The conventional data analysis methods for obtaining a pore size distribution (PSD) from gas sorption data make several critical assumptions that impact significantly on the accuracy of the PSD thereby obtained. In particular, assumptions must be made concerning the nature of the pore-filling or emptying process in adsorption, or desorption, respectively. The possibility of pore–pore interactions is also generally neglected. In this work, NMR cryoporometry and relaxometry have been used to study the adsorption and desorption of cyclohexane within a mesoporous, sol–gel silica catalyst support pellet with the aim of assessing the impact of the aforementioned problems for gas sorption PSDs and developing solutions. The advanced melting effect makes cryoporometry a particularly sensitive probe of adsorbate ganglia spatial distribution. It has been demonstrated that utilising gas sorption scanning curves provided insufficient additional information to alleviate the aforementioned problems with interpreting gas sorption data. The NMR data has shown how the nature of the sorption hysteresis changed with amount adsorbed, due to detectable variations in the mechanisms of pore-filling and emptying along the isotherm. Hence, relating a particular condensation or evaporation pressure to a specific characteristic pore size is not as straightforward as assumed in typical pore size analysis software. However, the NMR techniques reveal the additional information required to improve pore size estimates from gas sorption for disordered solids.
Original languageEnglish
Pages (from-to)168-175
JournalJournal of Colloid and Interface Science
Early online date11 Feb 2013
Publication statusPublished - 15 May 2013


Dive into the research topics of 'Probing hysteresis during sorption of cyclohexane within mesoporous silica using NMR cryoporometry and relaxometry'. Together they form a unique fingerprint.

Cite this