PrFeO3 Photocathodes Prepared Through Spray Pyrolysis

Emma Freeman, Santosh Kumar, Sophie R. Thomas, Hayley Pickering, David J. Fermin, Salvador Eslava

Research output: Contribution to journalArticlepeer-review

19 Citations (SciVal)

Abstract

Perovskite oxides are receiving wide interest for photocatalytic and photoelectrochemical devices, owing to their suitable band gaps for solar light absorption and stability in aqueous applications. Herein, we assess the activity of PrFeO3 photocathodes prepared by using spray pyrolysis and calcination temperatures between 500 and 700 °C. Scanning electron microscopy shows corrugated films of high surface coverage on the conductive glass substrate. The electrochemically active surface area shows slight decreases with temperature increases from 500 to 600 and 700 °C. However, transient photocurrent responses and impedance spectroscopy data showed that films calcined at higher temperatures reduced the probabilities of recombination due to trap states, resulting in faster rates of charge extraction. In this trade-off, a calcination temperature of 600 °C provided a maximum photocurrent of -130±4 μA cm−2 at +0.43 VRHE under simulated sunlight, with an incident photon-to-current conversion efficiency of 6.6 % at +0.61 VRHE and 350 nm and an onset potential of +1.4 VRHE for cathodic photocurrent.

Original languageEnglish
Pages (from-to)1365-1372
Number of pages8
JournalChemElectroChem
Volume7
Issue number6
Early online date10 Feb 2020
DOIs
Publication statusPublished - 16 Mar 2020

Keywords

  • perovskite phases
  • photocatalysis
  • photoelectrochemistry
  • PrFeO
  • spray pyrolysis

ASJC Scopus subject areas

  • Catalysis
  • Electrochemistry

Fingerprint

Dive into the research topics of 'PrFeO3 Photocathodes Prepared Through Spray Pyrolysis'. Together they form a unique fingerprint.

Cite this