Preliminary considerations on application of steamflooding in a toe-to-heel configuration

A T Turta, A K Singhal, T X Xia, M Greaves, J Goldman, J Ivory

Research output: Contribution to journalArticle

  • 1 Citations

Abstract

With the advent of horizontal wells, a distinct change is tacitly taking place in our approach to the improved recovery of heavy oil-from displacing mobilized oil in a flood pattern from injector to producers over long distances on the order of hundreds of metres to short-distance oil displacement (SDOD) processes (typically over a few tens of metres). SDOD processes comprise Steam Assisted Gravity Drainage (SAGD), Cyclic Steam Stimulation (CSS) and Toe-to-Heel (TTH) Displacement Processes, which comprise Toe-to-Heel Air Injection (THAI), with its variant catalytic THAI (CAPRI), and Toe-to-Heel Waterflooding (TTHW). Presently SAGD is commercially used, while THAI has been under field testing for 3 years; testing of CAPRI is scheduled to start in 2010. TTHW has been under field testing both in the US and Canada for more than 4 years. Steamflooding in a TTH configuration (TTH steamflooding) uses vertical wells as injectors and horizontal wells as producers, arranged in a staggered line drive, with producers having their toes close to the shoes of vertical injectors; the horizontal section of producers is located at the base of the pay. The vertical wells are used for initiating the steam front, which subsequently is anchored at the toe of the horizontal producer; it is then propagated towards the producer's heel. In TTH steamflooding, the existing deficiency of conventional steamflooding schemes in terms of low vertical sweep is overcome by the beneficial use of gravity. To investigate the potential of TTH steamflooding, some laboratory tests were conducted. The objective was to assess the feasibility of TTH steam and thermo-solvent flooding (steam+propane co-injection) by carrying out 3D model experiments using heavy oil with a viscosity of 15,000 cP. Laboratory results showed that the concepts of TTH steamflooding and TTH steamflooding with solvent are feasible. All in all, stability of TTH steamflooding was relatively good, while the stability of TTH steamflooding with the addition of nitrogen or propane was much better. Significant improvements in design and operation of these processes were needed in order to promote override during the early phase, and obtain a stable and efficient process. The improvements included a cold (gas fingering) and a hot (steam-based) communication phase-, and controlling lateral spread of steam by using two additional vertical control wells (positioned laterally but close to the heel of the horizontal producer) for conducting a limited steamflood. Nitrogen was injected along with steam in the conventional steamflood; propane replaced nitrogen in TTH steamflooding with solvent. With these improvements, rise of steam chamber to the top occurred much earlier, and a favourable tilt-forward-angle of the thermal front was quickly obtained. TTH steamflooding with solvent proved superior to the TTH steamflooding, as the channeling of steam through the horizontal well was much better controlled, and the oil recovery was considerably faster. With these improvements, the oil recovery increased from 50 - 54% to 75 - 77%, and the operation became smoother. Presently, the process can be considered only for reservoirs where oil has some mobility under reservoir conditions. In order to develop the full potential of TTH steamflooding, technology means are needed for controlling channeling through the horizontal producer (this control Occurs naturally in the THAI process); at present there are a few methods which seem promising.
LanguageEnglish
Article numberSPE-130444-PA
Pages41-50
Number of pages10
JournalJournal of Canadian Petroleum Technology
Volume48
Issue number11
DOIs
StatusPublished - Nov 2009
Event59th Annual Technical Meeting of the Petroleum-Society - Calgary, Canada
Duration: 17 Jun 200819 Jun 2008

Fingerprint

Steam
Oils
Propane
Horizontal wells
Well flooding
Gravitation
Nitrogen
Air
Recovery
Drainage
Testing
Crude oil
Gases
Viscosity

Cite this

Turta, A. T., Singhal, A. K., Xia, T. X., Greaves, M., Goldman, J., & Ivory, J. (2009). Preliminary considerations on application of steamflooding in a toe-to-heel configuration. DOI: 10.2118/130444-PA

Preliminary considerations on application of steamflooding in a toe-to-heel configuration. / Turta, A T; Singhal, A K; Xia, T X; Greaves, M; Goldman, J; Ivory, J.

In: Journal of Canadian Petroleum Technology, Vol. 48, No. 11, SPE-130444-PA, 11.2009, p. 41-50.

Research output: Contribution to journalArticle

Turta, AT, Singhal, AK, Xia, TX, Greaves, M, Goldman, J & Ivory, J 2009, 'Preliminary considerations on application of steamflooding in a toe-to-heel configuration' Journal of Canadian Petroleum Technology, vol. 48, no. 11, SPE-130444-PA, pp. 41-50. DOI: 10.2118/130444-PA
Turta AT, Singhal AK, Xia TX, Greaves M, Goldman J, Ivory J. Preliminary considerations on application of steamflooding in a toe-to-heel configuration. Journal of Canadian Petroleum Technology. 2009 Nov;48(11):41-50. SPE-130444-PA. Available from, DOI: 10.2118/130444-PA
Turta, A T ; Singhal, A K ; Xia, T X ; Greaves, M ; Goldman, J ; Ivory, J. / Preliminary considerations on application of steamflooding in a toe-to-heel configuration. In: Journal of Canadian Petroleum Technology. 2009 ; Vol. 48, No. 11. pp. 41-50
@article{603a13201cd24877afe28879ad60a4d8,
title = "Preliminary considerations on application of steamflooding in a toe-to-heel configuration",
abstract = "With the advent of horizontal wells, a distinct change is tacitly taking place in our approach to the improved recovery of heavy oil-from displacing mobilized oil in a flood pattern from injector to producers over long distances on the order of hundreds of metres to short-distance oil displacement (SDOD) processes (typically over a few tens of metres). SDOD processes comprise Steam Assisted Gravity Drainage (SAGD), Cyclic Steam Stimulation (CSS) and Toe-to-Heel (TTH) Displacement Processes, which comprise Toe-to-Heel Air Injection (THAI), with its variant catalytic THAI (CAPRI), and Toe-to-Heel Waterflooding (TTHW). Presently SAGD is commercially used, while THAI has been under field testing for 3 years; testing of CAPRI is scheduled to start in 2010. TTHW has been under field testing both in the US and Canada for more than 4 years. Steamflooding in a TTH configuration (TTH steamflooding) uses vertical wells as injectors and horizontal wells as producers, arranged in a staggered line drive, with producers having their toes close to the shoes of vertical injectors; the horizontal section of producers is located at the base of the pay. The vertical wells are used for initiating the steam front, which subsequently is anchored at the toe of the horizontal producer; it is then propagated towards the producer's heel. In TTH steamflooding, the existing deficiency of conventional steamflooding schemes in terms of low vertical sweep is overcome by the beneficial use of gravity. To investigate the potential of TTH steamflooding, some laboratory tests were conducted. The objective was to assess the feasibility of TTH steam and thermo-solvent flooding (steam+propane co-injection) by carrying out 3D model experiments using heavy oil with a viscosity of 15,000 cP. Laboratory results showed that the concepts of TTH steamflooding and TTH steamflooding with solvent are feasible. All in all, stability of TTH steamflooding was relatively good, while the stability of TTH steamflooding with the addition of nitrogen or propane was much better. Significant improvements in design and operation of these processes were needed in order to promote override during the early phase, and obtain a stable and efficient process. The improvements included a cold (gas fingering) and a hot (steam-based) communication phase-, and controlling lateral spread of steam by using two additional vertical control wells (positioned laterally but close to the heel of the horizontal producer) for conducting a limited steamflood. Nitrogen was injected along with steam in the conventional steamflood; propane replaced nitrogen in TTH steamflooding with solvent. With these improvements, rise of steam chamber to the top occurred much earlier, and a favourable tilt-forward-angle of the thermal front was quickly obtained. TTH steamflooding with solvent proved superior to the TTH steamflooding, as the channeling of steam through the horizontal well was much better controlled, and the oil recovery was considerably faster. With these improvements, the oil recovery increased from 50 - 54{\%} to 75 - 77{\%}, and the operation became smoother. Presently, the process can be considered only for reservoirs where oil has some mobility under reservoir conditions. In order to develop the full potential of TTH steamflooding, technology means are needed for controlling channeling through the horizontal producer (this control Occurs naturally in the THAI process); at present there are a few methods which seem promising.",
author = "Turta, {A T} and Singhal, {A K} and Xia, {T X} and M Greaves and J Goldman and J Ivory",
year = "2009",
month = "11",
doi = "10.2118/130444-PA",
language = "English",
volume = "48",
pages = "41--50",
journal = "Journal of Canadian Petroleum Technology",
issn = "0021-9487",
publisher = "Canadian Institute of Mining",
number = "11",

}

TY - JOUR

T1 - Preliminary considerations on application of steamflooding in a toe-to-heel configuration

AU - Turta,A T

AU - Singhal,A K

AU - Xia,T X

AU - Greaves,M

AU - Goldman,J

AU - Ivory,J

PY - 2009/11

Y1 - 2009/11

N2 - With the advent of horizontal wells, a distinct change is tacitly taking place in our approach to the improved recovery of heavy oil-from displacing mobilized oil in a flood pattern from injector to producers over long distances on the order of hundreds of metres to short-distance oil displacement (SDOD) processes (typically over a few tens of metres). SDOD processes comprise Steam Assisted Gravity Drainage (SAGD), Cyclic Steam Stimulation (CSS) and Toe-to-Heel (TTH) Displacement Processes, which comprise Toe-to-Heel Air Injection (THAI), with its variant catalytic THAI (CAPRI), and Toe-to-Heel Waterflooding (TTHW). Presently SAGD is commercially used, while THAI has been under field testing for 3 years; testing of CAPRI is scheduled to start in 2010. TTHW has been under field testing both in the US and Canada for more than 4 years. Steamflooding in a TTH configuration (TTH steamflooding) uses vertical wells as injectors and horizontal wells as producers, arranged in a staggered line drive, with producers having their toes close to the shoes of vertical injectors; the horizontal section of producers is located at the base of the pay. The vertical wells are used for initiating the steam front, which subsequently is anchored at the toe of the horizontal producer; it is then propagated towards the producer's heel. In TTH steamflooding, the existing deficiency of conventional steamflooding schemes in terms of low vertical sweep is overcome by the beneficial use of gravity. To investigate the potential of TTH steamflooding, some laboratory tests were conducted. The objective was to assess the feasibility of TTH steam and thermo-solvent flooding (steam+propane co-injection) by carrying out 3D model experiments using heavy oil with a viscosity of 15,000 cP. Laboratory results showed that the concepts of TTH steamflooding and TTH steamflooding with solvent are feasible. All in all, stability of TTH steamflooding was relatively good, while the stability of TTH steamflooding with the addition of nitrogen or propane was much better. Significant improvements in design and operation of these processes were needed in order to promote override during the early phase, and obtain a stable and efficient process. The improvements included a cold (gas fingering) and a hot (steam-based) communication phase-, and controlling lateral spread of steam by using two additional vertical control wells (positioned laterally but close to the heel of the horizontal producer) for conducting a limited steamflood. Nitrogen was injected along with steam in the conventional steamflood; propane replaced nitrogen in TTH steamflooding with solvent. With these improvements, rise of steam chamber to the top occurred much earlier, and a favourable tilt-forward-angle of the thermal front was quickly obtained. TTH steamflooding with solvent proved superior to the TTH steamflooding, as the channeling of steam through the horizontal well was much better controlled, and the oil recovery was considerably faster. With these improvements, the oil recovery increased from 50 - 54% to 75 - 77%, and the operation became smoother. Presently, the process can be considered only for reservoirs where oil has some mobility under reservoir conditions. In order to develop the full potential of TTH steamflooding, technology means are needed for controlling channeling through the horizontal producer (this control Occurs naturally in the THAI process); at present there are a few methods which seem promising.

AB - With the advent of horizontal wells, a distinct change is tacitly taking place in our approach to the improved recovery of heavy oil-from displacing mobilized oil in a flood pattern from injector to producers over long distances on the order of hundreds of metres to short-distance oil displacement (SDOD) processes (typically over a few tens of metres). SDOD processes comprise Steam Assisted Gravity Drainage (SAGD), Cyclic Steam Stimulation (CSS) and Toe-to-Heel (TTH) Displacement Processes, which comprise Toe-to-Heel Air Injection (THAI), with its variant catalytic THAI (CAPRI), and Toe-to-Heel Waterflooding (TTHW). Presently SAGD is commercially used, while THAI has been under field testing for 3 years; testing of CAPRI is scheduled to start in 2010. TTHW has been under field testing both in the US and Canada for more than 4 years. Steamflooding in a TTH configuration (TTH steamflooding) uses vertical wells as injectors and horizontal wells as producers, arranged in a staggered line drive, with producers having their toes close to the shoes of vertical injectors; the horizontal section of producers is located at the base of the pay. The vertical wells are used for initiating the steam front, which subsequently is anchored at the toe of the horizontal producer; it is then propagated towards the producer's heel. In TTH steamflooding, the existing deficiency of conventional steamflooding schemes in terms of low vertical sweep is overcome by the beneficial use of gravity. To investigate the potential of TTH steamflooding, some laboratory tests were conducted. The objective was to assess the feasibility of TTH steam and thermo-solvent flooding (steam+propane co-injection) by carrying out 3D model experiments using heavy oil with a viscosity of 15,000 cP. Laboratory results showed that the concepts of TTH steamflooding and TTH steamflooding with solvent are feasible. All in all, stability of TTH steamflooding was relatively good, while the stability of TTH steamflooding with the addition of nitrogen or propane was much better. Significant improvements in design and operation of these processes were needed in order to promote override during the early phase, and obtain a stable and efficient process. The improvements included a cold (gas fingering) and a hot (steam-based) communication phase-, and controlling lateral spread of steam by using two additional vertical control wells (positioned laterally but close to the heel of the horizontal producer) for conducting a limited steamflood. Nitrogen was injected along with steam in the conventional steamflood; propane replaced nitrogen in TTH steamflooding with solvent. With these improvements, rise of steam chamber to the top occurred much earlier, and a favourable tilt-forward-angle of the thermal front was quickly obtained. TTH steamflooding with solvent proved superior to the TTH steamflooding, as the channeling of steam through the horizontal well was much better controlled, and the oil recovery was considerably faster. With these improvements, the oil recovery increased from 50 - 54% to 75 - 77%, and the operation became smoother. Presently, the process can be considered only for reservoirs where oil has some mobility under reservoir conditions. In order to develop the full potential of TTH steamflooding, technology means are needed for controlling channeling through the horizontal producer (this control Occurs naturally in the THAI process); at present there are a few methods which seem promising.

UR - http://www.scopus.com/inward/record.url?scp=73849097956&partnerID=8YFLogxK

U2 - 10.2118/130444-PA

DO - 10.2118/130444-PA

M3 - Article

VL - 48

SP - 41

EP - 50

JO - Journal of Canadian Petroleum Technology

T2 - Journal of Canadian Petroleum Technology

JF - Journal of Canadian Petroleum Technology

SN - 0021-9487

IS - 11

M1 - SPE-130444-PA

ER -