Preliminary analysis of force-torque measurements for robot-assisted fracture surgery

Ioannis Georgilas, Giulio Dagnino, Payam Tarassoli, Roger Atkins, Sanja Dogramadzi

Research output: Chapter or section in a book/report/conference proceedingChapter in a published conference proceeding

15 Citations (SciVal)

Abstract

Our group at Bristol Robotics Laboratory has been working on a new robotic system for fracture surgery that has been previously reported [1]. The robotic system is being developed for distal femur fractures and features a robot that manipulates the small fracture fragments through small percutaneous incisions and a robot that re-aligns the long bones. The robots controller design relies on accurate and bounded force and position parameters for which we require real surgical data. This paper reports preliminary findings of forces and torques applied during bone and soft tissue manipulation in typical orthopaedic surgery procedures. Using customised orthopaedic surgical tools we have collected data from a range of orthopaedic surgical procedures at Bristol Royal Infirmary, UK. Maximum forces and torques encountered during fracture manipulation which involved proximal femur and soft tissue distraction around it and reduction of neck of femur fractures have been recorded and further analysed in conjunction with accompanying image recordings. Using this data we are establishing a set of technical requirements for creating safe and dynamically stable minimally invasive robot-assisted fracture surgery (RAFS) systems.

Original languageEnglish
Title of host publication37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015
PublisherIEEE
Pages4902-4905
Number of pages4
ISBN (Electronic)9781424492718
DOIs
Publication statusPublished - 4 Nov 2015
Event37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015 - Milan, Italy
Duration: 25 Aug 201529 Aug 2015

Conference

Conference37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2015
Country/TerritoryItaly
CityMilan
Period25/08/1529/08/15

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint

Dive into the research topics of 'Preliminary analysis of force-torque measurements for robot-assisted fracture surgery'. Together they form a unique fingerprint.

Cite this