Prediction of ingress through turbine rim seals-part I: Externally induced ingress

J Michael Owen, Kunyuan Zhou, Oliver Pountney, Michael Wilson, Gary Lock

Research output: Contribution to journalArticlepeer-review

78 Citations (SciVal)

Abstract

Rotationally induced (RI) ingress is caused by the negative pressure (relative to the external air) inside the wheel-space of a gas turbine; this negative pressure, which is created by the rotating flow in the wheel-space, drives the ingestion of hot gas through the rim seals. Externally induced (EI) ingress is caused by the circumferential distribution of pressure created by the blades and vanes in the turbine annulus: Ingress occurs in those regions where the external pressure is higher than that in the wheel-space, and egress occurs where it is lower. Although EI ingress is the dominant mechanism for hot-gas ingestion in engines, there are some conditions in which RI ingress has an influence: This is referred to as combined ingress (CI). In Part I of this two-part paper, values of the sealing effectiveness (obtained using the incompressible orifice equations developed for EI ingress in an earlier paper) are compared with published experimental data and with the results obtained using 3D steady compressible computational fluid dynamics (CFD). Acceptable limits of the incompressible-flow assumption are quantified for the orifice model; For the CFD, even though the Mach number in the annulus reaches approximately 0.65, it is shown that the incompressible orifice equations are still valid. The results confirm that EI ingress is caused predominantly by the magnitude of the peak-to-trough circumferential difference of pressure in the annulus; the shape of the pressure distribution is of secondary importance for the prediction of ingress. A simple equation, derived from the orifice model, provides a very good correlation of the computed values of effectiveness. Using this correlation, it is possible to estimate the minimum sealing flow rate to prevent ingress without the need to know anything about the pressure distribution in the annulus; this makes the orifice model a powerful tool for rim-seal design.
Original languageEnglish
Article number031012
Pages (from-to)1-13
Number of pages13
JournalJournal of Turbomachinery: Transactions of the ASME
Volume134
Issue number3
Early online date15 Jul 2011
DOIs
Publication statusPublished - 31 May 2012

Fingerprint

Dive into the research topics of 'Prediction of ingress through turbine rim seals-part I: Externally induced ingress'. Together they form a unique fingerprint.

Cite this