Abstract
Recent discovery of high enhancement of heat transfer in nanofluids may be applicable to the area of process intensification of chem. reactors through integration of the functionalities of reaction and heat transfer in compact multifunctional reactors. This may lead to the redn. in the processes footprint and energy intensity over the process life cycle, allow easier implementation of highly exothermic and endothermic reactions, and enable rapid quenching of reactions. A nanofluid based on benign TiO2 material dispersed in ethylene glycol has been studied in an integrated reactor-heat exchanger. An up to 35% increase in the overall heat transfer coeff. was measured in the steady state continuous expts. This resulted in a closer temp. control in the reaction of selective redn. of an arom. aldehyde by mol. hydrogen and very rapid change in the temp. of reaction under dynamic reaction control. [on SciFinder (R)]
Original language | English |
---|---|
Pages (from-to) | 670-677 |
Number of pages | 8 |
Journal | Green Chemistry |
Volume | 10 |
Issue number | 6 |
DOIs | |
Publication status | Published - 2008 |