Projects per year
Abstract
The Mannich reaction of the zirconium MOF [Zr6O4(OH)4(bdc-NH2)6] (UiO-66-NH2, bdc-NH2=2-amino-1,4-benzenedicarboxylate) with paraformaldehyde and pyrazole, imidazole or 2-mercaptoimidazole led to post-synthetic modification (PSM) through C−N bond formation. The reaction with imidazole (Him) goes to completion whereas those with pyrazole (Hpyz) and 2-mercaptoimidazole (HimSH) give up to 41 and 36 % conversion, respectively. The BET surface areas for the Mannich products are reduced from that of UiO-66-NH2, but the compounds show enhanced selectivity for adsorption of CO2 over N2 at 273 K. The thiol-containing MOFs adsorb mercury(II) ions from aqueous solution, removing up to 99 %. The Mannich reaction with pyrazole succeeds on [Zn4O(bdc-NH2)3] (IRMOF-3), but a similar reaction on [Zn2(bdc-NH2)2(dabco)] (dabco=1,4-diazabicyclo[2.2.2]octane) gave [Zn3(bdc-NH2)1.32(bdc-NHCH2pyz)1.68(dabco)]⋅2 C7H8 5, whereas the reaction with imidazole gave the expected PSM product. Compound 5 forms via a dissolution–recrystallisation process that is triggered by the “free” pyrazolate nitrogen atom competing with dabco for coordination to the zinc(II) centre. In contrast, the “free” nitrogen atom on the imidazolate is too far away to compete in this way. Mannich reactions on [In(OH)(bdc-NH2)] (MIL-68(In)-NH2) stop after the first step, and the product was identified as [In(OH)(bdc-NH2)0.41(bdc-NHCH2OCH3)0.30(bdc-N=CH2)0.29], with addition of the heterocycle prevented by steric interactions.
Original language | English |
---|---|
Pages (from-to) | 11094-11102 |
Number of pages | 9 |
Journal | Chemistry - A European Journal |
Volume | 24 |
Issue number | 43 |
Early online date | 29 May 2018 |
DOIs | |
Publication status | Published - 1 Aug 2018 |
Bibliographical note
© 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.Keywords
- Mannich reactions
- mercury
- metal-organic frameworks
- post-synthetic modification
- zirconium
ASJC Scopus subject areas
- General Chemistry
Fingerprint
Dive into the research topics of 'Post-Synthetic Mannich Chemistry on Metal-Organic Frameworks: System-Specific Reactivity and Functionality-Triggered Dissolution'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Applying Long-Lived Metastable States in Switchable Functionality via Kinetic Control of Molecular Assembly
Raithby, P. (PI), Burrows, A. (CoI), Lewis, D. (CoI), Marken, F. (CoI), Parker, S. (CoI), Walsh, A. (CoI) & Wilson, C. (CoI)
Engineering and Physical Sciences Research Council
1/11/12 → 30/04/18
Project: Research council
Profiles
-
Andrew Burrows
- Department of Chemistry - Professor
- Centre for Sustainable Chemical Technologies (CSCT)
- Faculty of Science - Associate Dean (Education)
- Centre for Integrated Materials, Processes & Structures (IMPS)
Person: Research & Teaching, Affiliate staff