Position and Force Control of Cooperating Robots Using Inverse Dynamics

Zhenyu Du

Research output: ThesisDoctoral Thesis

Abstract

Multiple robot manipulators cooperating in a common manipulation task can accomplish complex tasks that a single manipulator would be unable to complete. To achieve physical cooperation with multiple manipulators working on a common object, interaction forces need to be controlled throughout the motion. The aim of this research is to develop an inverse dynamics model-based cooperative force and position control scheme for multiple robot manipulators. An extended definition of motion is proposed to include force demands based on a constrained Lagrangian dynamics and Lagrangian multipliers formulation. This allows the direct calculation of the inverse dynamics with both motion and force demands. A feedforward controller based on the proposed method is built to realise the cooperative control of two robots sharing a common load, with both motion and force demands. Furthermore, this thesis develops a method to design an optimal excitation trajectory for robot dynamic parameter estimation utilising the Schroeder Phased Harmonic Sequence. This method yields more precise and accurate inverse dynamics models, which result in better control. The proposed controller is then tested in an experimental set-up consisting of two robot manipulators and a common load. Results show that in general the proposed controller performs noticeably better position and force tracking, especially for higher speed motions, when compared to traditional hybrid position/force controllers.
LanguageEnglish
QualificationPh.D.
Awarding Institution
  • University of Bath
Supervisors/Advisors
  • Iravani, Pejman, Supervisor
  • Sahinkaya, Mehmet, Supervisor
  • Plummer, Andrew, Supervisor
Award date25 Feb 2015
StatusPublished - 2 Oct 2014

Fingerprint

Force control
Position control
Manipulators
Robots
Controllers
Dynamic models
Parameter estimation
Trajectories

Keywords

  • Robotics
  • Inverse dynamics
  • Force control
  • Cooperative control

Cite this

Position and Force Control of Cooperating Robots Using Inverse Dynamics. / Du, Zhenyu.

2014. 156 p.

Research output: ThesisDoctoral Thesis

@phdthesis{80650dcf9688478d952a1a9951446198,
title = "Position and Force Control of Cooperating Robots Using Inverse Dynamics",
abstract = "Multiple robot manipulators cooperating in a common manipulation task can accomplish complex tasks that a single manipulator would be unable to complete. To achieve physical cooperation with multiple manipulators working on a common object, interaction forces need to be controlled throughout the motion. The aim of this research is to develop an inverse dynamics model-based cooperative force and position control scheme for multiple robot manipulators. An extended definition of motion is proposed to include force demands based on a constrained Lagrangian dynamics and Lagrangian multipliers formulation. This allows the direct calculation of the inverse dynamics with both motion and force demands. A feedforward controller based on the proposed method is built to realise the cooperative control of two robots sharing a common load, with both motion and force demands. Furthermore, this thesis develops a method to design an optimal excitation trajectory for robot dynamic parameter estimation utilising the Schroeder Phased Harmonic Sequence. This method yields more precise and accurate inverse dynamics models, which result in better control. The proposed controller is then tested in an experimental set-up consisting of two robot manipulators and a common load. Results show that in general the proposed controller performs noticeably better position and force tracking, especially for higher speed motions, when compared to traditional hybrid position/force controllers.",
keywords = "Robotics, Inverse dynamics, Force control, Cooperative control",
author = "Zhenyu Du",
year = "2014",
month = "10",
day = "2",
language = "English",
school = "University of Bath",

}

TY - THES

T1 - Position and Force Control of Cooperating Robots Using Inverse Dynamics

AU - Du, Zhenyu

PY - 2014/10/2

Y1 - 2014/10/2

N2 - Multiple robot manipulators cooperating in a common manipulation task can accomplish complex tasks that a single manipulator would be unable to complete. To achieve physical cooperation with multiple manipulators working on a common object, interaction forces need to be controlled throughout the motion. The aim of this research is to develop an inverse dynamics model-based cooperative force and position control scheme for multiple robot manipulators. An extended definition of motion is proposed to include force demands based on a constrained Lagrangian dynamics and Lagrangian multipliers formulation. This allows the direct calculation of the inverse dynamics with both motion and force demands. A feedforward controller based on the proposed method is built to realise the cooperative control of two robots sharing a common load, with both motion and force demands. Furthermore, this thesis develops a method to design an optimal excitation trajectory for robot dynamic parameter estimation utilising the Schroeder Phased Harmonic Sequence. This method yields more precise and accurate inverse dynamics models, which result in better control. The proposed controller is then tested in an experimental set-up consisting of two robot manipulators and a common load. Results show that in general the proposed controller performs noticeably better position and force tracking, especially for higher speed motions, when compared to traditional hybrid position/force controllers.

AB - Multiple robot manipulators cooperating in a common manipulation task can accomplish complex tasks that a single manipulator would be unable to complete. To achieve physical cooperation with multiple manipulators working on a common object, interaction forces need to be controlled throughout the motion. The aim of this research is to develop an inverse dynamics model-based cooperative force and position control scheme for multiple robot manipulators. An extended definition of motion is proposed to include force demands based on a constrained Lagrangian dynamics and Lagrangian multipliers formulation. This allows the direct calculation of the inverse dynamics with both motion and force demands. A feedforward controller based on the proposed method is built to realise the cooperative control of two robots sharing a common load, with both motion and force demands. Furthermore, this thesis develops a method to design an optimal excitation trajectory for robot dynamic parameter estimation utilising the Schroeder Phased Harmonic Sequence. This method yields more precise and accurate inverse dynamics models, which result in better control. The proposed controller is then tested in an experimental set-up consisting of two robot manipulators and a common load. Results show that in general the proposed controller performs noticeably better position and force tracking, especially for higher speed motions, when compared to traditional hybrid position/force controllers.

KW - Robotics

KW - Inverse dynamics

KW - Force control

KW - Cooperative control

M3 - Doctoral Thesis

ER -