Abstract
The concept of a reversible polymer displacement sensor mechanism for electrochemical glucose monitoring is demonstrated. A pyrene-derivatised boronic acid chemo-receptor for glucose is adsorbed onto a graphene foam electrode. Spontaneous oxidative polymerisation of nordihydroguaiaretic acid (NHG) onto the graphene foam electrode leads to a redox active film (poly-NHG) covalently attached to the boronic acid receptors. Oxidation of poly-NHG frees the boronic acid receptors to interact with glucose from the solution phase, which is detected due to competitive binding when reduced poly-NHG re-binds to the boronic acid functional groups. The sensor shows the anticipated boronic acid selectivity of fructose > glucose. The ratio of charges under the voltammetric peaks for poly-NHG unbound and bound is employed for glucose sensing with an approximately linear analytical range from 1 to 50 mM glucose in aqueous pH 7 buffer. The new methodology is shown to give apparent saccharide – boronic acid binding constants and to work in human serum. Therefore, in the future it could be developed further for glucose monitoring.
Original language | English |
---|---|
Pages (from-to) | 661-670 |
Number of pages | 10 |
Journal | The Analyst |
Volume | 147 |
Issue number | 4 |
Early online date | 19 Jan 2022 |
DOIs | |
Publication status | Published - 21 Feb 2022 |
Bibliographical note
Funding Information:S. M. W. thanks EPSRC (DTP) and Integrated Graphene Ltd. for scholarship support. T. D. J. wishes to thank the Royal Society for a Wolfson Research Merit Award and the Open Research Fund of the School of Chemistry and Chemical Engineering, Henan Normal University for support (2020ZD01).
Publisher Copyright:
© The Royal Society of Chemistry.
ASJC Scopus subject areas
- Analytical Chemistry
- Biochemistry
- Environmental Chemistry
- Spectroscopy
- Electrochemistry
Fingerprint
Dive into the research topics of 'Polymer Indicator Displacement Assay: Electrochemical Glucose Monitoring Based on Boronic Acid Receptors and Graphene Foam Competitively Binding with Poly-Nordihydroguaiaretic Acid'. Together they form a unique fingerprint.Equipment
-
Field Emission Scanning Electron Microscope (FE-SEM)
Material and Chemical Characterisation (MC2)Facility/equipment: Equipment
-
Raman confocal microscope RENISHAM INVIA
Material and Chemical Characterisation (MC2)Facility/equipment: Equipment