Abstract
Two-photon pumping of excited exciton states in semiconductor quantum wells is a tool for realization of ultra-compact terahertz (THz) lasers based on stimulated optical transition between excited 2p and ground 1s exciton state. We show that the probability of two-photon absorption by a 2p-exciton is strongly dependent on the polarization of both photons. Variation of the threshold power for THz lasing by a factor of 5 is predicted by switching from linear to circular pumping. We calculate the polarization dependence of the THz emission and identify photon polarization configurations for achieving maximum THz photon generation quantum efficiency.
Original language | English |
---|---|
Pages (from-to) | 199-204 |
Journal | MRS Proceedings |
Volume | 1617 |
DOIs | |
Publication status | Published - 2013 |