Abstract
Please note there is a typo in the paper on page B419 for the CPU time used for the second case, the correct CPU time for 12s of simulation time should be 1200s with Δx = Δz = H/60.
.................................................................................................................................................................
This paper details a novel numerical approach for solution of the Navier–Stokes
equations for free surface flows involving two-way fluid-solid interaction in arbitrary domains. The approach, which is hybrid Eulerian Lagrangian in nature, is based on the full particle particle-in-cell (PIC) method applied to incompressible flows. An extension of the distributed Lagrange multiplier (DLM) technique proposed by Patankar et al. [Int. J. Multiphase Flow, 26 (2000), pp. 1509–1524] is employed for the two-way fluid-solid coupling. The resulting code is called PICIN. Solid bodies can be mobile, either having prescribed motion or moving as a consequence of interaction with the fluid. Numerical results for three distinct example applications of the model in two spatial dimensions are given. A comparison of PICIN predictions with state-of-the-art numerical results of other researchers is made for each of the test cases presented.
.................................................................................................................................................................
This paper details a novel numerical approach for solution of the Navier–Stokes
equations for free surface flows involving two-way fluid-solid interaction in arbitrary domains. The approach, which is hybrid Eulerian Lagrangian in nature, is based on the full particle particle-in-cell (PIC) method applied to incompressible flows. An extension of the distributed Lagrange multiplier (DLM) technique proposed by Patankar et al. [Int. J. Multiphase Flow, 26 (2000), pp. 1509–1524] is employed for the two-way fluid-solid coupling. The resulting code is called PICIN. Solid bodies can be mobile, either having prescribed motion or moving as a consequence of interaction with the fluid. Numerical results for three distinct example applications of the model in two spatial dimensions are given. A comparison of PICIN predictions with state-of-the-art numerical results of other researchers is made for each of the test cases presented.
Original language | English |
---|---|
Pages (from-to) | B403-B424 |
Number of pages | 22 |
Journal | SIAM Journal on Scientific Computing |
Volume | 37 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2 Jun 2015 |
Keywords
- computational fluid dynamics
- Navier–Stokes
- particle-in-cell
- SPH
- VOF
- level set
- incompressible fluid
- fluid-structure interaction
Profiles
-
Jun Zang
- Department of Architecture & Civil Engineering - Deputy Head of Department
- Water Innovation and Research Centre (WIRC)
- Centre for Sustainable Energy Systems (SES)
- Centre for Regenerative Design & Engineering for a Net Positive World (RENEW)
- Centre for Climate Adaptation & Environment Research (CAER)
Person: Research & Teaching, Core staff, Affiliate staff