Physiochemical changes to TTCF ensilication investigated using time-resolved SAXS

Aswin Doekhie, Rajeev Dattani, Yun-Chu Chen, Francoise Koumanov, Karen Edler, Jean Van Den Elsen, Asel Sartbaeva

Research output: Contribution to journalArticlepeer-review


Successful eradication or control of prevailing infectious diseases is linked to vaccine efficacy, stability, and distribution. The majority of protein-based vaccines are transported at fridge (2 – 8 °C) temperatures, cold chain, to retain potency. However, this has been shown to be problematic. Proteins are inherently susceptible to thermal fluctuations, occurring during transportation, causing them to denature. This leads to ineffective vaccines and an increase in vaccine prevent-able diseases, especially in low-income countries. Our research utilises silica to preserve vaccines at room temperature, removing the need for cold chain logistics. The methodology is based up-on sol-gel chemistry where soluble silica is employed to encapsulate, ensilicate, vaccine proteins. This yields a protein-loaded silica nanoparticle powder which is stored at room temperature and subsequently released using a fast chemical process. We have previously shown that tetanus toxin C fragment (TTCF) ensilication is a diffusion limited cluster aggregation (DLCA) based process using time-resolved small angle x-ray scattering (SAXS). Here, we present our expanded investigation on the modularity of this system to further the understanding of ensilication via time-resolved SAXS. Our results show that variations in the ensilication process could prove useful in the transition from batch to in-flow manufacturing of ensilicated nanoparticles.
Original languageEnglish
Pages (from-to)4-13
Number of pages10
Issue number1
Publication statusPublished - 5 Aug 2021


Dive into the research topics of 'Physiochemical changes to TTCF ensilication investigated using time-resolved SAXS'. Together they form a unique fingerprint.

Cite this