Phylogeographic variation in recombination rates within a global clone of methicillin-resistant Staphylococcus aureus

Santiago Castillo-ramirez, Jukka Corander, Pekka Marttinen, Mona Aldeljawi, William P Hanage, Henrik Westh, Kit Boye, Zeynep Gulay, Stephen D Bentley, Julian Parkhill, Matthew T Holden, Edward J Feil

Research output: Contribution to journalArticle

62 Citations (Scopus)

Abstract

Background
Next-generation sequencing (NGS) is a powerful tool for understanding both patterns of descent over time and space (phylogeography) and the molecular processes underpinning genome divergence in pathogenic bacteria. Here, we describe a synthesis between these perspectives by employing a recently developed Bayesian approach, BRATNextGen, for detecting recombination on an expanded NGS dataset of the globally disseminated methicillin-resistant Staphylococcus aureus (MRSA) clone ST239.

Results
The data confirm strong geographical clustering at continental, national and city scales and demonstrate that the rate of recombination varies significantly between phylogeographic sub-groups representing independent introductions from Europe. These differences are most striking when mobile non-core genes are included, but remain apparent even when only considering the stable core genome. The monophyletic ST239 sub-group corresponding to isolates from South America shows heightened recombination, the sub-group predominantly from Asia shows an intermediate level, and a very low level of recombination is noted in a third sub-group representing a large collection from Turkey.

Conclusions
We show that the rapid global dissemination of a single pathogenic bacterial clone results in local variation in measured recombination rates. Possible explanatory variables include the size and time since emergence of each defined sub-population (as determined by the sampling frame), variation in transmission dynamics due to host movement, and changes in the bacterial genome affecting the propensity for recombination.
Original languageEnglish
Article numberR126
Number of pages14
JournalGenome Biology
Volume13
Issue number12
Early online date27 Dec 2012
DOIs
Publication statusPublished - 2012

Fingerprint Dive into the research topics of 'Phylogeographic variation in recombination rates within a global clone of methicillin-resistant <em>Staphylococcus aureus</em>'. Together they form a unique fingerprint.

  • Cite this

    Castillo-ramirez, S., Corander, J., Marttinen, P., Aldeljawi, M., Hanage, W. P., Westh, H., Boye, K., Gulay, Z., Bentley, S. D., Parkhill, J., Holden, M. T., & Feil, E. J. (2012). Phylogeographic variation in recombination rates within a global clone of methicillin-resistant Staphylococcus aureus. Genome Biology, 13(12), [R126]. https://doi.org/10.1186/gb-2012-13-12-r126