Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances

Charles M. Sharpless, Michael Aeschbacher, Sarah E. Page, Jannis Wenk, Michael Sander, Kristopher McNeill

Research output: Contribution to journalArticle

105 Citations (Scopus)
165 Downloads (Pure)

Abstract

Two aquatic fulvic acids and one soil humic acid were irradiated to examine the resulting changes in the redox and photochemical properties of the humic substances (HS), the relationship between these changes, and their relationship to changes in the optical properties. For all HS, irradiation caused photooxidation, as shown by decreasing electron donating capacities. Photooxidation was accompanied by decreases in specific UV absorbance and increases in the E2/E3 ratio (254 nm absorbance divided by that at 365 nm). In contrast, photooxidation had little effect on the samples' electron accepting capacities. The coupled changes in optical and redox properties for the different HS suggest that phenols are an important determinant of aquatic HS optical properties and that quinones may play a more important role in soil HS. Apparent quantum yields of H2O2, ·OH, and triplet HS decreased with photooxidation, thus demonstrating selective destruction of HS photosensitizing chromophores. In contrast, singlet oxygen (1O 2) quantum yields increased, which is ascribed to either decreased 1O2 quenching within the HS microenvironment or the presence of a pool of photostable sensitizers. The photochemical properties show clear trends with SUVA and E2/E3, but the trends differ substantially between aquatic and soil HS. Importantly, photooxidation produces a relationship between the 1O2 quantum yield and E2/E3 that differs distinctly from that observed with untreated HS. This finding suggests that there may be watershed-specific correlations between HS chemical and optical properties that reflect the dominant processes controlling the HS character.

Original languageEnglish
Pages (from-to)2688-2696
Number of pages9
JournalEnvironmental Science and Technology
Volume48
Issue number5
Early online date2 Jan 2014
DOIs
Publication statusPublished - 4 Mar 2014

Fingerprint Dive into the research topics of 'Photooxidation-induced changes in optical, electrochemical, and photochemical properties of humic substances'. Together they form a unique fingerprint.

  • Cite this