Projects per year
Abstract
Lattice vibrations in CH3NH3PbI3 are strongly interacting, with double-well instabilities present at the Brillouin zone boundary. Analysis within a first-principles lattice-dynamics framework reveals anharmonic potentials with short phonon quasiparticle lifetimes and mean free paths. The phonon behavior is distinct from the inorganic semiconductors GaAs and CdTe where three-phonon interaction strengths are three orders of magnitude smaller. The implications for the applications of hybrid halide perovskites arising from thermal conductivity, band-gap deformation, and charge-carrier scattering through electron-phonon coupling, are presented.
Original language | English |
---|---|
Article number | 220301(R) |
Journal | Physical Review B |
Volume | 94 |
DOIs | |
Publication status | Published - 8 Dec 2016 |
Fingerprint
Dive into the research topics of 'Phonon anharmonicity, lifetimes, and thermal transport in CH3NH3PbI3 from many-body perturbation theory'. Together they form a unique fingerprint.Projects
- 2 Finished
-
Multi-Scale Modelling of Hybrid Perovskites for Solar Cells
Walsh, A. (PI)
Engineering and Physical Sciences Research Council
1/02/15 → 31/01/18
Project: Research council
-
Applying Long-Lived Metastable States in Switchable Functionality via Kinetic Control of Molecular Assembly
Raithby, P. (PI), Burrows, A. (CoI), Lewis, D. (CoI), Marken, F. (CoI), Parker, S. (CoI), Walsh, A. (CoI) & Wilson, C. (CoI)
Engineering and Physical Sciences Research Council
1/11/12 → 30/04/18
Project: Research council
Datasets
-
Data for "Phonon anharmonicity, lifetimes, and thermal transport in CH3NH3PbI3 from many-body perturbation theory"
Skelton, J. (Creator), Whalley, L. (Data Collector), Frost, J. (Data Collector) & Walsh, A. (Project Leader), University of Bath, 2016
DOI: 10.15125/BATH-00322
Dataset
Equipment
-
Balena High Performance Computing (HPC) System
Facility/equipment: Equipment
-
High Performance Computing (HPC) Facility
Chapman, S. (Manager)
University of BathFacility/equipment: Facility