PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

L.~J. Tacconi, R. Genzel, A. Saintonge, F. Combes, S. García-Burillo, R. Neri, A.~D. Bolatto, T. Contini, Natascha M Förster Schreiber, S.~J. Lilly, D. Lutz, S. Wuyts, Gioacchino Accurso, J. Boissier, F. Boone, N. Bouché, F. Bournaud, A. Burkert, C.~M. Carollo, Martyn CooperC. Feruglio, J. Freundlich, Rodrigo Herrera-Camus, S. Juneau, M. Lippa, T. Naab, A. Renzini, P. Salome, A. Sternberg, K.-i. Tadaki, H. Übler, F. Walter, B.~J. Weiner

Research output: Contribution to journalArticlepeer-review

498 Citations (SciVal)
109 Downloads (Pure)

Abstract

This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M /M o) = 9.0-11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10 -1.3 to 10 2.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z) -0.6 × (δMS) -0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z.

Original languageEnglish
Article number179
Pages (from-to)179 - 200
Number of pages22
JournalAstrophysical Journal
Volume853
Issue number2
DOIs
Publication statusPublished - 5 Feb 2018

Keywords

  • galaxies: evolution
  • galaxies: high-redshift
  • galaxies: kinematics and dynamics
  • infrared: galaxies

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions'. Together they form a unique fingerprint.

Cite this