PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

L.~J. Tacconi, R. Genzel, A. Saintonge, F. Combes, S. García-Burillo, R. Neri, A.~D. Bolatto, T. Contini, Natascha M Förster Schreiber, S.~J. Lilly, D. Lutz, S. Wuyts, Gioacchino Accurso, J. Boissier, F. Boone, N. Bouché, F. Bournaud, A. Burkert, C.~M. Carollo, Martyn CooperC. Feruglio, J. Freundlich, Rodrigo Herrera-Camus, S. Juneau, M. Lippa, T. Naab, A. Renzini, P. Salome, A. Sternberg, K.-i. Tadaki, H. Übler, F. Walter, B.~J. Weiner

Research output: Contribution to journalArticle

102 Citations (Scopus)
40 Downloads (Pure)

Abstract

This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M /M o) = 9.0-11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10 -1.3 to 10 2.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z) -0.6 × (δMS) -0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z.

Original languageEnglish
Article number179
Pages (from-to)179 - 200
Number of pages22
JournalAstrophysical Journal
Volume853
Issue number2
DOIs
Publication statusPublished - 5 Feb 2018

Fingerprint

molecular gases
star formation rate
depletion
stellar mass
scaling
gases
gas
dust
galaxies
main sequence stars
spectral energy distribution
photometry
star formation
curvature
trends
stars
rate
method

Keywords

  • galaxies: evolution
  • galaxies: high-redshift
  • galaxies: kinematics and dynamics
  • infrared: galaxies

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Cite this

Tacconi, L. J., Genzel, R., Saintonge, A., Combes, F., García-Burillo, S., Neri, R., ... Weiner, B. J. (2018). PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions. Astrophysical Journal, 853(2), 179 - 200. [179]. https://doi.org/10.3847/1538-4357/aaa4b4

PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions. / Tacconi, L.~J.; Genzel, R.; Saintonge, A.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.~D.; Contini, T.; Schreiber, Natascha M Förster; Lilly, S.~J.; Lutz, D.; Wuyts, S.; Accurso, Gioacchino; Boissier, J.; Boone, F.; Bouché, N.; Bournaud, F.; Burkert, A.; Carollo, C.~M.; Cooper, Martyn; Feruglio, C.; Freundlich, J.; Herrera-Camus, Rodrigo; Juneau, S.; Lippa, M.; Naab, T.; Renzini, A.; Salome, P.; Sternberg, A.; Tadaki, K.-i.; Übler, H.; Walter, F.; Weiner, B.~J.

In: Astrophysical Journal, Vol. 853, No. 2, 179, 05.02.2018, p. 179 - 200.

Research output: Contribution to journalArticle

Tacconi, LJ, Genzel, R, Saintonge, A, Combes, F, García-Burillo, S, Neri, R, Bolatto, AD, Contini, T, Schreiber, NMF, Lilly, SJ, Lutz, D, Wuyts, S, Accurso, G, Boissier, J, Boone, F, Bouché, N, Bournaud, F, Burkert, A, Carollo, CM, Cooper, M, Feruglio, C, Freundlich, J, Herrera-Camus, R, Juneau, S, Lippa, M, Naab, T, Renzini, A, Salome, P, Sternberg, A, Tadaki, K, Übler, H, Walter, F & Weiner, BJ 2018, 'PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions', Astrophysical Journal, vol. 853, no. 2, 179, pp. 179 - 200. https://doi.org/10.3847/1538-4357/aaa4b4
Tacconi LJ, Genzel R, Saintonge A, Combes F, García-Burillo S, Neri R et al. PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions. Astrophysical Journal. 2018 Feb 5;853(2):179 - 200. 179. https://doi.org/10.3847/1538-4357/aaa4b4
Tacconi, L.~J. ; Genzel, R. ; Saintonge, A. ; Combes, F. ; García-Burillo, S. ; Neri, R. ; Bolatto, A.~D. ; Contini, T. ; Schreiber, Natascha M Förster ; Lilly, S.~J. ; Lutz, D. ; Wuyts, S. ; Accurso, Gioacchino ; Boissier, J. ; Boone, F. ; Bouché, N. ; Bournaud, F. ; Burkert, A. ; Carollo, C.~M. ; Cooper, Martyn ; Feruglio, C. ; Freundlich, J. ; Herrera-Camus, Rodrigo ; Juneau, S. ; Lippa, M. ; Naab, T. ; Renzini, A. ; Salome, P. ; Sternberg, A. ; Tadaki, K.-i. ; Übler, H. ; Walter, F. ; Weiner, B.~J. / PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions. In: Astrophysical Journal. 2018 ; Vol. 853, No. 2. pp. 179 - 200.
@article{70237ffae90d4a57b3d21d5ed72cd501,
title = "PHIBSS:: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions",
abstract = "This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M ∗/M o) = 9.0-11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10 -1.3 to 10 2.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z) -0.6 × (δMS) -0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z.",
keywords = "galaxies: evolution, galaxies: high-redshift, galaxies: kinematics and dynamics, infrared: galaxies",
author = "L.~J. Tacconi and R. Genzel and A. Saintonge and F. Combes and S. Garc{\'i}a-Burillo and R. Neri and A.~D. Bolatto and T. Contini and Schreiber, {Natascha M F{\"o}rster} and S.~J. Lilly and D. Lutz and S. Wuyts and Gioacchino Accurso and J. Boissier and F. Boone and N. Bouch{\'e} and F. Bournaud and A. Burkert and C.~M. Carollo and Martyn Cooper and C. Feruglio and J. Freundlich and Rodrigo Herrera-Camus and S. Juneau and M. Lippa and T. Naab and A. Renzini and P. Salome and A. Sternberg and K.-i. Tadaki and H. {\"U}bler and F. Walter and B.~J. Weiner",
year = "2018",
month = "2",
day = "5",
doi = "10.3847/1538-4357/aaa4b4",
language = "English",
volume = "853",
pages = "179 -- 200",
journal = "Astrophysical Journal",
issn = "0004-637X",
publisher = "IOP Publishing",
number = "2",

}

TY - JOUR

T1 - PHIBSS:

T2 - Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions

AU - Tacconi, L.~J.

AU - Genzel, R.

AU - Saintonge, A.

AU - Combes, F.

AU - García-Burillo, S.

AU - Neri, R.

AU - Bolatto, A.~D.

AU - Contini, T.

AU - Schreiber, Natascha M Förster

AU - Lilly, S.~J.

AU - Lutz, D.

AU - Wuyts, S.

AU - Accurso, Gioacchino

AU - Boissier, J.

AU - Boone, F.

AU - Bouché, N.

AU - Bournaud, F.

AU - Burkert, A.

AU - Carollo, C.~M.

AU - Cooper, Martyn

AU - Feruglio, C.

AU - Freundlich, J.

AU - Herrera-Camus, Rodrigo

AU - Juneau, S.

AU - Lippa, M.

AU - Naab, T.

AU - Renzini, A.

AU - Salome, P.

AU - Sternberg, A.

AU - Tadaki, K.-i.

AU - Übler, H.

AU - Walter, F.

AU - Weiner, B.~J.

PY - 2018/2/5

Y1 - 2018/2/5

N2 - This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M ∗/M o) = 9.0-11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10 -1.3 to 10 2.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z) -0.6 × (δMS) -0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z.

AB - This paper provides an update of our previous scaling relations between galaxy-integrated molecular gas masses, stellar masses, and star formation rates (SFRs), in the framework of the star formation main sequence (MS), with the main goal of testing for possible systematic effects. For this purpose our new study combines three independent methods of determining molecular gas masses from CO line fluxes, far-infrared dust spectral energy distributions, and ∼1 mm dust photometry, in a large sample of 1444 star-forming galaxies between z = 0 and 4. The sample covers the stellar mass range log(M ∗/M o) = 9.0-11.8, and SFRs relative to that on the MS, δMS = SFR/SFR(MS), from 10 -1.3 to 10 2.2. Our most important finding is that all data sets, despite the different techniques and analysis methods used, follow the same scaling trends, once method-to-method zero-point offsets are minimized and uncertainties are properly taken into account. The molecular gas depletion time t depl, defined as the ratio of molecular gas mass to SFR, scales as (1 + z) -0.6 × (δMS) -0.44 and is only weakly dependent on stellar mass. The ratio of molecular to stellar mass μ gas depends on (, which tracks the evolution of the specific SFR. The redshift dependence of μ gas requires a curvature term, as may the mass dependences of t depl and μ gas. We find no or only weak correlations of t depl and μ gas with optical size R or surface density once one removes the above scalings, but we caution that optical sizes may not be appropriate for the high gas and dust columns at high z.

KW - galaxies: evolution

KW - galaxies: high-redshift

KW - galaxies: kinematics and dynamics

KW - infrared: galaxies

UR - http://www.scopus.com/inward/record.url?scp=85041916950&partnerID=8YFLogxK

U2 - 10.3847/1538-4357/aaa4b4

DO - 10.3847/1538-4357/aaa4b4

M3 - Article

VL - 853

SP - 179

EP - 200

JO - Astrophysical Journal

JF - Astrophysical Journal

SN - 0004-637X

IS - 2

M1 - 179

ER -