Pharmacological differences between rat frontal cortex and hippocampus in the nicotinic modulation of noradrenaline release implicate distinct receptor subtypes

A. Kennett, D. J. Heal, S. Wonnacott

Research output: Contribution to journalArticle

  • 10 Citations

Abstract

Introduction: Noradrenergic mechanisms in frontal cortex and hippocampus are relevant to attentional and stress-related aspects of addiction, respectively. Nicotinic receptors (nAChRs) modulate the release of noradrenaline (NA) in these tissues. This study determined if similar subtypes of nAChR regulate NA release in rat frontal cortex and hippocampus.


Methods: The release of [3H]-NA from rat tissue prisms was characterized in a 96-well plate assay. In vivo microdialysis was used to monitor NA overflow from rat frontal cortex and hippocampus in conscious freely moving rats.


Results: [3H]-NA release from frontal cortex prisms was more sensitive to nicotinic agonists than release from hippocampal prisms. The β2-selective agonist 5-iodo-A-85380 was 1000-fold more potent in frontal cortex compared with hippocampus. Agonist-evoked [3H]-NA release was inhibited by the β2-selective antagonist dihydro-beta-erythroidine (DHβE) in frontal cortex, whereas in hippocampal tissue, DHβE had no effect. In vivo, 5-iodo-A-85380 (1, 100 μM) applied locally via the dialysis probe, significantly increased NA overflow, compared with basal release, in frontal cortex but not in hippocampus.


Conclusions: These data support the modulation of NA release by different nAChR subtypes in frontal cortex and hippocampus. The pharmacological profile for rat hippocampus is consistent with previous studies, implicating α3β4* nAChRs in the modulation of NA release in this tissue. nAChRs having this function in frontal cortex are pharmacologically distinct and correspond to β2-containing nAChRs.
LanguageEnglish
Article numbernts128
Pages1339-1345
Number of pages7
JournalNicotine & Tobacco Research
Volume14
Issue number11
Early online date21 May 2012
DOIs
StatusPublished - Nov 2012

Fingerprint

Frontal Lobe
Hippocampus
Norepinephrine
Pharmacology
A 85380
Dihydro-beta-Erythroidine
Nicotinic Agonists
Microdialysis
Nicotinic Receptors
Dialysis

Cite this

@article{ea3523bd8a3f4dac9abec33c0b4ceb0d,
title = "Pharmacological differences between rat frontal cortex and hippocampus in the nicotinic modulation of noradrenaline release implicate distinct receptor subtypes",
abstract = "Introduction: Noradrenergic mechanisms in frontal cortex and hippocampus are relevant to attentional and stress-related aspects of addiction, respectively. Nicotinic receptors (nAChRs) modulate the release of noradrenaline (NA) in these tissues. This study determined if similar subtypes of nAChR regulate NA release in rat frontal cortex and hippocampus. Methods: The release of [3H]-NA from rat tissue prisms was characterized in a 96-well plate assay. In vivo microdialysis was used to monitor NA overflow from rat frontal cortex and hippocampus in conscious freely moving rats. Results: [3H]-NA release from frontal cortex prisms was more sensitive to nicotinic agonists than release from hippocampal prisms. The β2-selective agonist 5-iodo-A-85380 was 1000-fold more potent in frontal cortex compared with hippocampus. Agonist-evoked [3H]-NA release was inhibited by the β2-selective antagonist dihydro-beta-erythroidine (DHβE) in frontal cortex, whereas in hippocampal tissue, DHβE had no effect. In vivo, 5-iodo-A-85380 (1, 100 μM) applied locally via the dialysis probe, significantly increased NA overflow, compared with basal release, in frontal cortex but not in hippocampus. Conclusions: These data support the modulation of NA release by different nAChR subtypes in frontal cortex and hippocampus. The pharmacological profile for rat hippocampus is consistent with previous studies, implicating α3β4* nAChRs in the modulation of NA release in this tissue. nAChRs having this function in frontal cortex are pharmacologically distinct and correspond to β2-containing nAChRs.",
author = "A. Kennett and Heal, {D. J.} and S. Wonnacott",
year = "2012",
month = "11",
doi = "10.1093/ntr/nts128",
language = "English",
volume = "14",
pages = "1339--1345",
journal = "Nicotine & Tobacco Research",
issn = "1462-2203",
publisher = "Oxford University Press",
number = "11",

}

TY - JOUR

T1 - Pharmacological differences between rat frontal cortex and hippocampus in the nicotinic modulation of noradrenaline release implicate distinct receptor subtypes

AU - Kennett,A.

AU - Heal,D. J.

AU - Wonnacott,S.

PY - 2012/11

Y1 - 2012/11

N2 - Introduction: Noradrenergic mechanisms in frontal cortex and hippocampus are relevant to attentional and stress-related aspects of addiction, respectively. Nicotinic receptors (nAChRs) modulate the release of noradrenaline (NA) in these tissues. This study determined if similar subtypes of nAChR regulate NA release in rat frontal cortex and hippocampus. Methods: The release of [3H]-NA from rat tissue prisms was characterized in a 96-well plate assay. In vivo microdialysis was used to monitor NA overflow from rat frontal cortex and hippocampus in conscious freely moving rats. Results: [3H]-NA release from frontal cortex prisms was more sensitive to nicotinic agonists than release from hippocampal prisms. The β2-selective agonist 5-iodo-A-85380 was 1000-fold more potent in frontal cortex compared with hippocampus. Agonist-evoked [3H]-NA release was inhibited by the β2-selective antagonist dihydro-beta-erythroidine (DHβE) in frontal cortex, whereas in hippocampal tissue, DHβE had no effect. In vivo, 5-iodo-A-85380 (1, 100 μM) applied locally via the dialysis probe, significantly increased NA overflow, compared with basal release, in frontal cortex but not in hippocampus. Conclusions: These data support the modulation of NA release by different nAChR subtypes in frontal cortex and hippocampus. The pharmacological profile for rat hippocampus is consistent with previous studies, implicating α3β4* nAChRs in the modulation of NA release in this tissue. nAChRs having this function in frontal cortex are pharmacologically distinct and correspond to β2-containing nAChRs.

AB - Introduction: Noradrenergic mechanisms in frontal cortex and hippocampus are relevant to attentional and stress-related aspects of addiction, respectively. Nicotinic receptors (nAChRs) modulate the release of noradrenaline (NA) in these tissues. This study determined if similar subtypes of nAChR regulate NA release in rat frontal cortex and hippocampus. Methods: The release of [3H]-NA from rat tissue prisms was characterized in a 96-well plate assay. In vivo microdialysis was used to monitor NA overflow from rat frontal cortex and hippocampus in conscious freely moving rats. Results: [3H]-NA release from frontal cortex prisms was more sensitive to nicotinic agonists than release from hippocampal prisms. The β2-selective agonist 5-iodo-A-85380 was 1000-fold more potent in frontal cortex compared with hippocampus. Agonist-evoked [3H]-NA release was inhibited by the β2-selective antagonist dihydro-beta-erythroidine (DHβE) in frontal cortex, whereas in hippocampal tissue, DHβE had no effect. In vivo, 5-iodo-A-85380 (1, 100 μM) applied locally via the dialysis probe, significantly increased NA overflow, compared with basal release, in frontal cortex but not in hippocampus. Conclusions: These data support the modulation of NA release by different nAChR subtypes in frontal cortex and hippocampus. The pharmacological profile for rat hippocampus is consistent with previous studies, implicating α3β4* nAChRs in the modulation of NA release in this tissue. nAChRs having this function in frontal cortex are pharmacologically distinct and correspond to β2-containing nAChRs.

UR - http://www.scopus.com/inward/record.url?scp=84868088169&partnerID=8YFLogxK

UR - http://www.ncbi.nlm.nih.gov/pubmed/22614547

UR - http://dx.doi.org/10.1093/ntr/nts128

U2 - 10.1093/ntr/nts128

DO - 10.1093/ntr/nts128

M3 - Article

VL - 14

SP - 1339

EP - 1345

JO - Nicotine & Tobacco Research

T2 - Nicotine & Tobacco Research

JF - Nicotine & Tobacco Research

SN - 1462-2203

IS - 11

M1 - nts128

ER -