PGSE Diffusion Studies on Chelating Phosphine Complexes of Ruthenium(II). Solvent Dependence and Ion Pairing

P G Anil Kumar, Paul S Pregosin, J M Goicoechea, Michael K Whittlesey

Research output: Contribution to journalArticlepeer-review

52 Citations (Scopus)

Abstract

PGSE (pulsed-gradient spin echo) 1H and 19F diffusion data, D values, and 1H,19F HOESY NMR spectra for [RuCl(p-cymene)(BINAP)]X salts [X = BF4- (2a), CF3SO3- (2b), BArF- (2c), PF6- (2d), SbF6- (2e), Cl- (2f); BArF = tetrakis(3,5-bis(trifluoromethyl)phenyl)borate] were recorded in CD2Cl2. The solvent dependence of the D values for 2a-c in MeOH, CHCl3, CH2Cl2, and acetone and the resulting ion-pairing effects are discussed. From HOESY data, probably small anions in CHCl3 soln. approach the Ru atom from the side of the mol. remote from the chloride and slightly below the complexed arene. PGSE diffusion data for the Ru-aqua complexes [Ru(H2O)3(CO)(dppe)]X2 [X = BF4- (3a), CF3SO3- (3b), SbF6- (3c), N(O2SCF3)2- (3d)] are reported. The obsd. D values for 3a-d partially reflect H bonding from complexed H2O to the anions.
Original languageEnglish
Pages (from-to)2956-2960
Number of pages5
JournalOrganometallics
Volume22
Issue number14
Publication statusPublished - 2003

Keywords

  • NMR (spin-echo
  • pulsed gradient spin echo diffusion chelating phosphine ruthenium complex
  • Hydrogen bond
  • NMR (proton-fluorine-19 HOESY
  • solvent dependence diffusion PGSE chelating phosphine ruthenium complex
  • Solvent effect (solvent dependence and ion pairing in pulsed-gradient spin-echo diffusion studies of chelating phosphine ruthenium complexes)
  • pulsed-gradient
  • Ion pairs
  • Diffusion
  • ion pairing solvent dependence diffusion chelating phosphine ruthenium complex
  • solvent dependence and ion pairing in pulsed-gradient spin-echo diffusion studies of chelating phosphine ruthenium complexes)

Fingerprint Dive into the research topics of 'PGSE Diffusion Studies on Chelating Phosphine Complexes of Ruthenium(II). Solvent Dependence and Ion Pairing'. Together they form a unique fingerprint.

Cite this