PDGF enhancement of IL-1 receptor levels in smooth muscle cells involves induction of an attachment-regulated, heparan sulfate binding site (IL-1RIII).

Soraya Valles, Christopher J Caunt, Michelle H Walker, Eva E Qwarnstrom

Research output: Contribution to journalArticle

  • 2 Citations

Abstract

This study shows that increase in IL-1 receptor levels by platelet derived growth factor (PDGF) involves an enhancement of a matrix-dependent, low-affinity receptor that constitutes a heparan sulfate. Fibronectin attachment caused pronounced alterations in IL-1 receptor function in smooth muscle cells, involving a pronounced increase in cell surface binding from an average of 2,000 up to approximately 8,000 receptors/cell and an increase in affinity (K(a)) of the type I receptor from 1.8 +/- 0.9 x 10(9) to 3.7 +/- 0.5 x 10(9) M(-1). PDGF stimulation similarly enhanced the level of cell surface binding by between 30% and 100%, with, in general, less effect on cells plated on fibronectin. Further, PDGF had a pronounced effect on the type I receptor affinity in the absence of matrix attachment, increasing the K(a) from 1.77 +/- 0.93 x 10(9) to 5.1 +/- 2.1 x 10(9) M(-1). Scatchard analyses revealed that PDGF, similarly to fibronectin attachment, caused enhancement of a second low-affinity binding site. Antibody blocking showed that approximately 50% of the attachment-induced increase was independent of type I receptor binding. Further, a similar fraction of the cell surface interaction was blocked by soluble heparan sulfate and dependent on cell binding to the heparan binding site. Cross-linking demonstrated that, in addition to the type I receptor, IL-1 bound to a second high molecular weight complex of 300 kd, induced by fibronectin attachment as well as by PDGF in the absence of matrix. Biochemical analyses demonstrated that this second site constitutes a heparan sulfate, which directly interacted with the type I receptor after recruitment to the complex, and which bound up to 50% and 25% of the ligand after fibronectin attachment and PDGF stimulation, respectively. The data show that PDGF induces an attachment-regulated low-affinity IL-1 binding site in smooth muscle cells, constituting a heparan sulfate. Correlation of the recruitment of this component to the IL-1 receptor complex with structural regulation of receptor function and enhancement of IL-1-mediated responses suggests that this is a significant mechanism in PDGF augmentation of local inflammatory responses during vessel wall pathogenesis.
LanguageEnglish
Pages855-862
Number of pages8
JournalLaboratory Investigation: A Journal of Technical Methods and Pathology
Volume82
Issue number7
DOIs
StatusPublished - 2002

Fingerprint

Heparitin Sulfate
Interleukin-1 Receptors
Platelet-Derived Growth Factor
Smooth Muscle Myocytes
Binding Sites
Fibronectins
Interleukin-1
Blocking Antibodies
Cell Communication
Molecular Weight
Ligands

Cite this

PDGF enhancement of IL-1 receptor levels in smooth muscle cells involves induction of an attachment-regulated, heparan sulfate binding site (IL-1RIII). / Valles, Soraya; Caunt, Christopher J; Walker, Michelle H; Qwarnstrom, Eva E.

In: Laboratory Investigation: A Journal of Technical Methods and Pathology, Vol. 82, No. 7, 2002, p. 855-862.

Research output: Contribution to journalArticle

@article{a310613b332b4e7a8daa66c896041012,
title = "PDGF enhancement of IL-1 receptor levels in smooth muscle cells involves induction of an attachment-regulated, heparan sulfate binding site (IL-1RIII).",
abstract = "This study shows that increase in IL-1 receptor levels by platelet derived growth factor (PDGF) involves an enhancement of a matrix-dependent, low-affinity receptor that constitutes a heparan sulfate. Fibronectin attachment caused pronounced alterations in IL-1 receptor function in smooth muscle cells, involving a pronounced increase in cell surface binding from an average of 2,000 up to approximately 8,000 receptors/cell and an increase in affinity (K(a)) of the type I receptor from 1.8 +/- 0.9 x 10(9) to 3.7 +/- 0.5 x 10(9) M(-1). PDGF stimulation similarly enhanced the level of cell surface binding by between 30{\%} and 100{\%}, with, in general, less effect on cells plated on fibronectin. Further, PDGF had a pronounced effect on the type I receptor affinity in the absence of matrix attachment, increasing the K(a) from 1.77 +/- 0.93 x 10(9) to 5.1 +/- 2.1 x 10(9) M(-1). Scatchard analyses revealed that PDGF, similarly to fibronectin attachment, caused enhancement of a second low-affinity binding site. Antibody blocking showed that approximately 50{\%} of the attachment-induced increase was independent of type I receptor binding. Further, a similar fraction of the cell surface interaction was blocked by soluble heparan sulfate and dependent on cell binding to the heparan binding site. Cross-linking demonstrated that, in addition to the type I receptor, IL-1 bound to a second high molecular weight complex of 300 kd, induced by fibronectin attachment as well as by PDGF in the absence of matrix. Biochemical analyses demonstrated that this second site constitutes a heparan sulfate, which directly interacted with the type I receptor after recruitment to the complex, and which bound up to 50{\%} and 25{\%} of the ligand after fibronectin attachment and PDGF stimulation, respectively. The data show that PDGF induces an attachment-regulated low-affinity IL-1 binding site in smooth muscle cells, constituting a heparan sulfate. Correlation of the recruitment of this component to the IL-1 receptor complex with structural regulation of receptor function and enhancement of IL-1-mediated responses suggests that this is a significant mechanism in PDGF augmentation of local inflammatory responses during vessel wall pathogenesis.",
author = "Soraya Valles and Caunt, {Christopher J} and Walker, {Michelle H} and Qwarnstrom, {Eva E}",
year = "2002",
doi = "10.1097/01.LAB.0000020420.07575.3F",
language = "English",
volume = "82",
pages = "855--862",
journal = "Laboratory Investigation: A Journal of Technical Methods and Pathology",
issn = "0023-6837",
publisher = "Nature Publishing Group",
number = "7",

}

TY - JOUR

T1 - PDGF enhancement of IL-1 receptor levels in smooth muscle cells involves induction of an attachment-regulated, heparan sulfate binding site (IL-1RIII).

AU - Valles,Soraya

AU - Caunt,Christopher J

AU - Walker,Michelle H

AU - Qwarnstrom,Eva E

PY - 2002

Y1 - 2002

N2 - This study shows that increase in IL-1 receptor levels by platelet derived growth factor (PDGF) involves an enhancement of a matrix-dependent, low-affinity receptor that constitutes a heparan sulfate. Fibronectin attachment caused pronounced alterations in IL-1 receptor function in smooth muscle cells, involving a pronounced increase in cell surface binding from an average of 2,000 up to approximately 8,000 receptors/cell and an increase in affinity (K(a)) of the type I receptor from 1.8 +/- 0.9 x 10(9) to 3.7 +/- 0.5 x 10(9) M(-1). PDGF stimulation similarly enhanced the level of cell surface binding by between 30% and 100%, with, in general, less effect on cells plated on fibronectin. Further, PDGF had a pronounced effect on the type I receptor affinity in the absence of matrix attachment, increasing the K(a) from 1.77 +/- 0.93 x 10(9) to 5.1 +/- 2.1 x 10(9) M(-1). Scatchard analyses revealed that PDGF, similarly to fibronectin attachment, caused enhancement of a second low-affinity binding site. Antibody blocking showed that approximately 50% of the attachment-induced increase was independent of type I receptor binding. Further, a similar fraction of the cell surface interaction was blocked by soluble heparan sulfate and dependent on cell binding to the heparan binding site. Cross-linking demonstrated that, in addition to the type I receptor, IL-1 bound to a second high molecular weight complex of 300 kd, induced by fibronectin attachment as well as by PDGF in the absence of matrix. Biochemical analyses demonstrated that this second site constitutes a heparan sulfate, which directly interacted with the type I receptor after recruitment to the complex, and which bound up to 50% and 25% of the ligand after fibronectin attachment and PDGF stimulation, respectively. The data show that PDGF induces an attachment-regulated low-affinity IL-1 binding site in smooth muscle cells, constituting a heparan sulfate. Correlation of the recruitment of this component to the IL-1 receptor complex with structural regulation of receptor function and enhancement of IL-1-mediated responses suggests that this is a significant mechanism in PDGF augmentation of local inflammatory responses during vessel wall pathogenesis.

AB - This study shows that increase in IL-1 receptor levels by platelet derived growth factor (PDGF) involves an enhancement of a matrix-dependent, low-affinity receptor that constitutes a heparan sulfate. Fibronectin attachment caused pronounced alterations in IL-1 receptor function in smooth muscle cells, involving a pronounced increase in cell surface binding from an average of 2,000 up to approximately 8,000 receptors/cell and an increase in affinity (K(a)) of the type I receptor from 1.8 +/- 0.9 x 10(9) to 3.7 +/- 0.5 x 10(9) M(-1). PDGF stimulation similarly enhanced the level of cell surface binding by between 30% and 100%, with, in general, less effect on cells plated on fibronectin. Further, PDGF had a pronounced effect on the type I receptor affinity in the absence of matrix attachment, increasing the K(a) from 1.77 +/- 0.93 x 10(9) to 5.1 +/- 2.1 x 10(9) M(-1). Scatchard analyses revealed that PDGF, similarly to fibronectin attachment, caused enhancement of a second low-affinity binding site. Antibody blocking showed that approximately 50% of the attachment-induced increase was independent of type I receptor binding. Further, a similar fraction of the cell surface interaction was blocked by soluble heparan sulfate and dependent on cell binding to the heparan binding site. Cross-linking demonstrated that, in addition to the type I receptor, IL-1 bound to a second high molecular weight complex of 300 kd, induced by fibronectin attachment as well as by PDGF in the absence of matrix. Biochemical analyses demonstrated that this second site constitutes a heparan sulfate, which directly interacted with the type I receptor after recruitment to the complex, and which bound up to 50% and 25% of the ligand after fibronectin attachment and PDGF stimulation, respectively. The data show that PDGF induces an attachment-regulated low-affinity IL-1 binding site in smooth muscle cells, constituting a heparan sulfate. Correlation of the recruitment of this component to the IL-1 receptor complex with structural regulation of receptor function and enhancement of IL-1-mediated responses suggests that this is a significant mechanism in PDGF augmentation of local inflammatory responses during vessel wall pathogenesis.

UR - http://www.nature.com/labinvest/journal/v82/n7/abs/3780486a.html

UR - http://dx.doi.org/10.1097/01.LAB.0000020420.07575.3F

U2 - 10.1097/01.LAB.0000020420.07575.3F

DO - 10.1097/01.LAB.0000020420.07575.3F

M3 - Article

VL - 82

SP - 855

EP - 862

JO - Laboratory Investigation: A Journal of Technical Methods and Pathology

T2 - Laboratory Investigation: A Journal of Technical Methods and Pathology

JF - Laboratory Investigation: A Journal of Technical Methods and Pathology

SN - 0023-6837

IS - 7

ER -