Patterns of cross-resistance and collateral sensitivity between clinical antibiotics and natural antimicrobials

Abigail Colclough, Jukka Corander, Samuel K. Sheppard, Sion C. Bayliss, Michiel Vos

Research output: Contribution to journalArticle

1 Citation (Scopus)

Abstract

Bacteria interact with a multitude of other organisms, many of which produce antimicrobials. Selection for resistance to these antimicrobials has the potential to result in resistance to clinical antibiotics when active compounds target the same bacterial pathways. The possibility of such cross-resistance between natural antimicrobials and antibiotics has to our knowledge received very little attention. The antimicrobial activity of extracts from seaweeds, known to be prolific producers of antimicrobials, is here tested against Staphylococcus aureus isolates with varied clinical antibiotic resistance profiles. An overall effect consistent with cross-resistance is demonstrated, with multidrug-resistant S. aureus strains being on average more resistant to seaweed extracts. This pattern could potentially indicate that evolution of resistance to antimicrobials in the natural environment could lead to resistance against clinical antibiotics. However, patterns of antimicrobial activity of individual seaweed extracts vary considerably and include collateral sensitivity, where increased resistance to a particular antibiotic is associated with decreased resistance to a particular seaweed extract. Our correlation-based methods allow the identification of antimicrobial extracts bearing most promise for downstream active compound identification and pharmacological testing.

Original languageEnglish
Pages (from-to)878-887
Number of pages10
JournalEvolutionary Applications
Volume12
Issue number5
Early online date6 Jan 2019
DOIs
Publication statusPublished - 1 Jun 2019

Keywords

  • antibiotic resistance
  • Antimicrobials
  • collateral sensitivity
  • cross-resistance
  • seaweeds
  • Staphylococcus aureus

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Genetics
  • Agricultural and Biological Sciences(all)

Fingerprint Dive into the research topics of 'Patterns of cross-resistance and collateral sensitivity between clinical antibiotics and natural antimicrobials'. Together they form a unique fingerprint.

Cite this