Projects per year
Abstract
Structural optimization methods can be extremely powerful when used at the initial, conceptual, design stage of a building or bridge structure, potentially identifying materially efficient forms that are beyond the imagination of a human designer. This is particularly important at present, given the pressing need to reduce the carbon footprint associated with the built environment in the face of the current climate emergency. In this contribution, a computationally efficient global-local optimization framework is proposed, in which a linear programming-based truss layout optimization step is employed to generate initial (near-)optimal designs, with a non-linear optimization step then used to generate designs that take account of real-world complexity. To facilitate rapid exploration of design concepts, the proposed global-local optimization framework has been made available in the Peregrine plug-in for the popular Rhino-Grasshopper parametric modelling environment. The efficacy of the approach is demonstrated through its application to a range of case study problems.
Original language | English |
---|---|
Pages (from-to) | 469-482 |
Number of pages | 14 |
Journal | Structures |
Volume | 37 |
Early online date | 18 Jan 2022 |
DOIs | |
Publication status | Published - 31 Mar 2022 |
Bibliographical note
Funding Information:The financial support provided by the Engineering and Physical Research Council (EPSRC) for projects EP/N023471/1 and EP/N023269/1 and a follow-up Knowledge Exchange project is gratefully acknowledged. The development of the Peregrine Rhino / Grasshopper plugin has also been supported by the INTEGRADDE project, funded from the European Union's Horizon 2020 research and innovation programme under grant agreement No 820776.
Funding Information:
The financial support provided by the Engineering and Physical Research Council (EPSRC) for projects EP/N023471/1 and EP/N023269/1 and a follow-up Knowledge Exchange project is gratefully acknowledged. The development of the Peregrine Rhino / Grasshopper plugin has also been supported by the INTEGRADDE project, funded from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 820776.
Keywords
- Layout optimization
- Parametric design
- Structural design
- Structural optimization
- Topology optimization
ASJC Scopus subject areas
- Safety, Risk, Reliability and Quality
- Building and Construction
- Civil and Structural Engineering
- Architecture
Fingerprint
Dive into the research topics of 'Optimization-driven conceptual design of truss structures in a parametric modelling environment'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Computational Design Optimization of Large-Scale Building Structures
Shepherd, P. (PI)
Engineering and Physical Sciences Research Council
1/07/16 → 31/12/19
Project: Research council