Projects per year
Abstract
We demonstrate how FlowNMR spectroscopy can readily be applied to investigate photochemical reactions that require sustained input of light and air to yield mechanistic insight under realistic conditions. The Eosin Y mediated photo-oxidation of N-allylbenzylamine is shown to produce imines as primary reaction products from which undesired aldehydes form after longer reaction times. Facile variation of reaction conditions during the reaction in flow allows for probe experiments that give information about the mode of action of the photocatalyst.
Original language | English |
---|---|
Pages (from-to) | 30-33 |
Number of pages | 4 |
Journal | Chemical communications (Cambridge, England) |
Volume | 54 |
Issue number | 1 |
Early online date | 13 Nov 2017 |
DOIs | |
Publication status | Published - 4 Jan 2018 |
ASJC Scopus subject areas
- Catalysis
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- General Chemistry
- Surfaces, Coatings and Films
- Metals and Alloys
- Materials Chemistry
Fingerprint
Dive into the research topics of 'Online monitoring of a photocatalytic reaction by real-time high resolution FlowNMR spectroscopy'. Together they form a unique fingerprint.Projects
- 1 Finished
-
An Integrated, Multi-Dimensional In-Operando Reaction Monitoring Facility for Homogenous Catalysis Research
Davidson, M. (PI), Hintermair, U. (CoI), Knight, J. (CoI), Lowe, J. (CoI), Lowe, J. (CoI) & Lubben, A. T. (CoI)
Engineering and Physical Sciences Research Council
10/07/16 → 9/07/19
Project: Research council