One-point localization for branching random walk in Pareto environment

Research output: Contribution to journalArticle

2 Citations (Scopus)

Abstract

We consider a branching random walk on the lattice, where the branching rates are given by an i.i.d. Pareto random potential. We show a very strong form of intermittency, where with high probability most of the mass of the system is concentrated in a single site with high potential. The analogous one-point localization is already known for the parabolic Anderson model, which describes the expected number of particles in the same system. In our case, we rely on very fine estimates for the behaviour of particles near a good point. This complements our earlier results that in the rescaled picture most of the mass is concentrated on a small island.
Original languageEnglish
Article number6
Number of pages20
JournalElectronic Journal of Probability
Volume22
DOIs
Publication statusPublished - 17 Jan 2017

Fingerprint Dive into the research topics of 'One-point localization for branching random walk in Pareto environment'. Together they form a unique fingerprint.

Cite this