TY - JOUR
T1 - On the structure of right 3-Engel subgroups
AU - Crosby, Peter G
PY - 2012/4
Y1 - 2012/4
N2 - We state and prove two sharp results on the structure of normal subgroups consisting of right 3-Engel elements. First we prove that if H is a 3-torsion-free such subgroup of a group G and x ∈ G, then [H, 4〈 x 〉 G] = {1}. When H is additionally {2, 5}-torsion-free, we prove that [H, 8G] = {1}.
AB - We state and prove two sharp results on the structure of normal subgroups consisting of right 3-Engel elements. First we prove that if H is a 3-torsion-free such subgroup of a group G and x ∈ G, then [H, 4〈 x 〉 G] = {1}. When H is additionally {2, 5}-torsion-free, we prove that [H, 8G] = {1}.
UR - http://www.scopus.com/inward/record.url?scp=84857033521&partnerID=8YFLogxK
UR - http://dx.doi.org/10.1016/j.jalgebra.2011.12.031
U2 - 10.1016/j.jalgebra.2011.12.031
DO - 10.1016/j.jalgebra.2011.12.031
M3 - Article
SN - 0021-8693
VL - 365
SP - 205
EP - 220
JO - Journal of Algebra
JF - Journal of Algebra
IS - 1
ER -