Abstract
Given initial data u0 ∈ Lp (ℝ3) for some p in $$\left[ {3,{{18} \over 5}} \right[$$, the auhtors first prove that 3D incompressible Navier-Stokes system has a unique solution u = uL+v with $${u_L}\mathop = \limits^{{\rm{def}}} \,{{\rm{e}}^{t\Delta }}{u_0}$$ and $$v \in {{\tilde L}^\infty }\left({\left[ {0,T} \right];{{\dot H}^{{5 \over 2} - {6 \over p}}}} \right) \cap {{\tilde L}^1}\left({\left] {0,T} \right[;{{\dot H}^{{9 \over 2} - {6 \over p}}}} \right)$$ for some positive time T. Then they derive an explicit lower bound for the radius of space analyticity of v, which in particular extends the corresponding results in [Chemin, J.-Y., Gallagher, I. and Zhang, P., On the radius of analyticity of solutions to semi-linear parabolic system, Math. Res. Lett., 27, 2020, 1631–1643, Herbst, I. and Skibsted, E., Analyticity estimates for the Navier-Stokes equations, Adv. in Math., 228, 2011, 1990–2033] with initial data in Ḣs(ℝ3) for $$s \in \left[ {{1 \over 2},{3 \over 2}} \right[$$.
| Original language | English |
|---|---|
| Pages (from-to) | 749-772 |
| Number of pages | 24 |
| Journal | Chinese Annals of Mathematics - Series B |
| Volume | 43 |
| Issue number | 5 |
| DOIs | |
| Publication status | Published - 30 Sept 2022 |
Bibliographical note
Publisher Copyright:© 2022, The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg.
Keywords
- 35Q30
- 76D03
- Incompressible Navier-Stokes equations
- Littlewood-Paley theory
- Radius of analyticity
ASJC Scopus subject areas
- General Mathematics
- Applied Mathematics