TY - JOUR
T1 - On the quest for a pan-European flood frequency distribution
T2 - Effect of scale and climate
AU - Salinas, J. L.
AU - Castellarin, A.
AU - Kohnová, S.
AU - Kjeldsen, T. R.
PY - 2013
Y1 - 2013
N2 - This study addresses the question of the existence of a parent flood frequency distribution on a European scale. A new database of L-moment ratios of flood annual maximum series (AMS) from 4105 catchments was compiled by joining 13 national data sets. Simple exploration of the database presents the generalized extreme value (GEV) distribution as a potential pan-European flood frequency distribution, being the three-parameter statistical model that with the closest resemblance to the estimated average of the sample L-moment ratios. Additional Monte Carlo simulations show that the variability in terms of sample skewness and kurtosis present in the data is larger than in a hypothetical scenario where all the samples were drawn from a GEV model. Overall, the generalized extreme value distribution fails to represent the kurtosis dispersion, especially for the longer sample lengths and medium to high skewness values, and therefore may be rejected in a statistical hypothesis testing framework as a single pan-European parent distribution for annual flood maxima. The results presented in this paper suggest that one single statistical model may not be able to fit the entire variety of flood processes present at a European scale, and presents an opportunity to further investigate the catchment and climatic factors controlling European flood regimes and their effects on the underlying flood frequency distributions.
AB - This study addresses the question of the existence of a parent flood frequency distribution on a European scale. A new database of L-moment ratios of flood annual maximum series (AMS) from 4105 catchments was compiled by joining 13 national data sets. Simple exploration of the database presents the generalized extreme value (GEV) distribution as a potential pan-European flood frequency distribution, being the three-parameter statistical model that with the closest resemblance to the estimated average of the sample L-moment ratios. Additional Monte Carlo simulations show that the variability in terms of sample skewness and kurtosis present in the data is larger than in a hypothetical scenario where all the samples were drawn from a GEV model. Overall, the generalized extreme value distribution fails to represent the kurtosis dispersion, especially for the longer sample lengths and medium to high skewness values, and therefore may be rejected in a statistical hypothesis testing framework as a single pan-European parent distribution for annual flood maxima. The results presented in this paper suggest that one single statistical model may not be able to fit the entire variety of flood processes present at a European scale, and presents an opportunity to further investigate the catchment and climatic factors controlling European flood regimes and their effects on the underlying flood frequency distributions.
UR - http://dx.doi.org/10.5194/hessd-10-6321-2013
U2 - 10.5194/hessd-10-6321-2013
DO - 10.5194/hessd-10-6321-2013
M3 - Article
SN - 1812-2116
VL - 10
SP - 6321
EP - 6358
JO - Hydrology and Earth System Sciences Discussions
JF - Hydrology and Earth System Sciences Discussions
IS - 5
ER -