Abstract
This paper presents a numerical study on the hydrodynamic performance of a vertical pile-restrained wave energy converter type floating breakwater. The aims are to further understand the characteristics of such integrated system in terms of both wave energy extraction and wave attenuation, and to provide guidance for optimising the shape of the floating breakwater for more energy absorption and less wave transmission at the same time. The numerical model solves the incompressible Navier-Stokes equations for free-surface flows using the particle-in-cell method and incorporates a Cartesian cut cell based strong coupling algorithm for fluid-structure interaction. The numerical model is first validated against an existing experiment, consisting of a rectangular box as the floating breakwater and a power take-off system installed above the breakwater, for the computation of the capture width ratio and wave transmission coefficients. Following that, an optimisation study based on the numerical model is conducted focusing on modifying the shape of the floating breakwater used in the experiment. The results indicate that by changing only the seaward side straight corner of the rectangular box to a small curve corner, the integrated system achieves significantly more wave energy extraction at the cost of only a slight increase in wave transmission.
Original language | English |
---|---|
Pages (from-to) | 414-425 |
Number of pages | 12 |
Journal | Renewable Energy |
Volume | 146 |
Early online date | 28 Jun 2019 |
DOIs | |
Publication status | Published - 1 Feb 2020 |
Keywords
- Wave Energy Converters
- floating breakwater
- particle-in-cell method
- CFD
Fingerprint
Dive into the research topics of 'On the hydrodynamic performance of a vertical pile-restrained WEC-type floating breakwater'. Together they form a unique fingerprint.Profiles
-
Jun Zang
- Department of Architecture & Civil Engineering - Deputy Head of Department
- Water Innovation and Research Centre (WIRC)
- Centre for Sustainable Energy Systems (SES)
- Centre for Regenerative Design & Engineering for a Net Positive World (RENEW)
- Centre for Climate Adaptation & Environment Research (CAER)
- Institute of Sustainability and Climate Change
Person: Research & Teaching, Core staff, Affiliate staff