@inbook{6ae7f5827bc64de5a03e9fa2bf2900e7,
title = "On the historical overview of geometric algebra for kinematics of mechanisms",
abstract = "In this article, a historical survey of geometric algebra also called Clifford algebra is first undertaken in chronological order. This new algebra is ascribed to Grassmann and Clifford. The quaternion algebra originated from Hamilton can be considered as its special version. Next, in terms of geometric algebra notation, we further deal with the representation of the classical problems about the single finite rotation, first derived by Euler, and the composition formula of two successive finite rotations, originally proposed by Rodriques. Finally, the rigid body motion in the four dimensional geometric algebra G4 is introduced for the basis of possible future applications using geometric algebra and a general rigid body motion related to the 4×4 homogeneous transformation matrix in Euclidean space is then elucidated.",
keywords = "Clifford algebra, Historical survey, Quaternion algebra, Rigid body motion, Geometric algebra",
author = "Lee, {Chung Ching} and Stammers, {Charles W} and Glen Mullineux",
note = "Symposium held at the National Cheng Kung University (Tainan, Taiwan) on November 11-14, 2008; International Symposium on History of Machines and Mechanisms, Proceedings of HMM 2008 ; Conference date: 10-11-2008 Through 14-11-2008",
year = "2009",
month = jan,
day = "11",
doi = "10.1007/978-1-4020-9485-9_2",
language = "English",
isbn = "978-1-4020-9484-2 (Print) 978-1-4020-9485-9 (Online)",
volume = "4",
series = "History of Mechanism and Machine Science",
publisher = "Springer",
pages = "21--34",
editor = "Hong-Sen Yan and Marco Ceccarelli",
booktitle = "International Symposium on History of Machines and Mechanisms, Proceedings of HMM 2008",
}