On the feasibility of carbon nanotube windings for electrical machines - Case study for a coreless axial flux motor

Vandana Rallabandi, Narges Taran, Dan M. Ionel, John F. Eastham

Research output: Chapter in Book/Report/Conference proceedingConference contribution

9 Citations (Scopus)

Abstract

The latest developments in carbon nanotube (CNT) wires and yarns attract great interest for potential application to electromagnetic devices, such as electrical machines and transformers. The CNT material properties are largely different from copper and aluminum in terms of electrical conductivity, mass density, and thermal transfer, creating a new design paradigm for which the traditional rules and device topologies no longer apply. This paper proposes a brushless permanent magnet multidisc axial flux construction with coreless stator and special windings and minimal rotor back iron, as a suitable topology for CNT winding application. Specific analytical closed-form sizing equations, as a function of winding electric conductivity, machine dimensions, and operating speed/frequency, are derived and employed in a systematic comparative study over a range of kW power ratings and speeds between 1,000 and 10,000 rpm. The numerical study is complemented by 3D and 2D electromagnetic FEA. The results show that the designs with CNT windings may have substantially higher specific power per mass, particularly at high rotational speeds and/or supply frequency, where the combined effect of DC and AC conduction losses in the windings is significant.

Original languageEnglish
Title of host publicationECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings
PublisherIEEE
ISBN (Electronic)9781509007370
ISBN (Print)9781509007387
DOIs
Publication statusPublished - 13 Feb 2017
Event2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016 - Milwaukee, USA United States
Duration: 18 Sep 201622 Sep 2016

Conference

Conference2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016
CountryUSA United States
CityMilwaukee
Period18/09/1622/09/16

Keywords

  • axial flux machine
  • carbon nanotube conductors
  • CNT wire
  • CNT yarn
  • coreless motor
  • sizing equations

Fingerprint Dive into the research topics of 'On the feasibility of carbon nanotube windings for electrical machines - Case study for a coreless axial flux motor'. Together they form a unique fingerprint.

Cite this