On simple symplectic alternating algebras and their groups of automorphisms

Orazio Puglisi, Gunnar Traustason

Research output: Contribution to journalArticlepeer-review

1 Citation (SciVal)
153 Downloads (Pure)

Abstract

Let N be any perfect symplectic alternating algebra. We show that N can be embedded into a larger simple alternating algebra S of dimension View the MathML source7⋅(dimN)+6 such that Aut (S)={id}Aut (S)={id}. This answers a question raised in [9]. Building on this result we show moreover that for any finite group G and characteristic c there exists a symplectic alternating algebra L over a field FF of characteristic c such that Aut (L)=GAut (L)=G.
Original languageEnglish
Pages (from-to)164-176
JournalJournal of Algebra
Volume461
Early online date17 Jun 2016
DOIs
Publication statusPublished - 1 Sept 2016

Fingerprint

Dive into the research topics of 'On simple symplectic alternating algebras and their groups of automorphisms'. Together they form a unique fingerprint.

Cite this