Abstract
Volker Strassen first suggested an algorithm to multiply matrices with
worst case running time less than the conventional O(n^3) operations in 1969. He also presented a recursive algorithm with which to invert matrices, and calculate determinants using matrix multiplication. James R. Bunch & John E. Hopcroft improved upon this in 1974 by providing modifications to the inversion algorithm in the case where principal submatrices were singular, amongst other improvements. We cover the case of multivariate polynomial matrix inversion, where it is noted that conventional methods that assume a field will experience major setbacks. Initially, there existed a presentation of a fraction free formulation of inversion via matrix multiplication along with motivations in [TDS17], however analysis of this presentation was rudimentary. We hence provide a discussion of the true complexities of this fraction free method arising from matrix multiplication, and arrive at its limitations.
Original language  English 

Media of output  arxiv.org 
Publication status  Published  3 Jan 2019 
Keywords
 Matrix Inversion
 Symbolic Computation
Fingerprint Dive into the research topics of 'On Fast Matrix Inversion by Fast Matrix Multiplication'. Together they form a unique fingerprint.
Datasets

'On Fast Matrix Inversion' Cancellations Demonstration Worksheet
Tonks, Z. (Creator), University of Bath, 7 Jan 2019
DOI: 10.15125/BATH00577
Dataset