Projects per year
Abstract
We report a molecular crystal that exhibits four successive phase transitions under hydrostatic pressure, driven by aurophilic interactions, with the ground-state structure re-emerging at high pressure. The effect of pressure on two polytypes of tris(μ2-3,5-diisopropyl-1,2,4-triazolato-κ2N1:N2)trigold(I) (denoted Form-I and Form-II) has been analysed using luminescence spectroscopy, single-crystal X-ray diffraction and first-principles computation. A unique phase behaviour was observed in Form-I, with a complex sequence of phase transitions between 1 and 3.5 GPa. The ambient C2/c mother cell transforms to a P21/n phase above 1 GPa, followed by a P21/a phase above 2 GPa and a large-volume C2/c supercell at 2.70 GPa, with the previously observed P21/n phase then reappearing at higher pressure. The observation of crystallographically identical low- and high-pressure P21/n phases makes this a rare example of a re-entrant phase transformation. The phase behaviour has been characterized using detailed crystallographic theory and modelling, and rationalized in terms of molecular structural distortions. The dramatic changes in conformation are correlated with shifts of the luminescence maxima, from a band maximum at 14040 cm−1 at 2.40 GPa, decreasing steeply to 13550 cm−1 at 3 GPa. A similar study of Form-II displays more conventional crystallographic behaviour, indicating that the complex behaviour observed in Form-I is likely to be a direct consequence of the differences in crystal packing between the two polytypes.
Original language | English |
---|---|
Pages (from-to) | 367 |
Number of pages | 376 |
Journal | IUCrJ |
Volume | 3 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 Sept 2016 |
Keywords
- re-entrant phase transitions; high-pressure crystallography; gold(I); luminescence spectroscopy; DFT calculations
Fingerprint
Dive into the research topics of 'Observation of a re-entrant phase transition in the molecular complex tris(μ2-3,5-diisopropyl-1,2,4-triazolato-κ2N1:N2)trigold(I) under high pressure'. Together they form a unique fingerprint.Projects
- 4 Finished
-
Understanding and Engineering Function in Switchable Molecular Crystals
Engineering and Physical Sciences Research Council
15/04/13 → 14/04/18
Project: Research council
-
Applying Long-Lived Metastable States in Switchable Functionality via Kinetic Control of Molecular Assembly
Raithby, P., Burrows, A., Lewis, D., Marken, F., Parker, S., Walsh, A. & Wilson, C.
Engineering and Physical Sciences Research Council
1/11/12 → 30/04/18
Project: Research council
-
Dynamic Structural Science at the RC@H
Engineering and Physical Sciences Research Council
1/03/11 → 31/08/16
Project: Research council
Profiles
-
Paul Raithby
- Centre for Sustainable and Circular Technologies (CSCT)
- Centre for Nanoscience and Nanotechnology
- Department of Chemistry - Professor Emeritus
Person: Research & Teaching, Honorary / Visiting Staff
Equipment
-
Raman confocal microscope RENISHAM INVIA
Material and Chemical Characterisation (MC2)Facility/equipment: Equipment