Notes on transformations in integrable geometry

Research output: Chapter in Book/Report/Conference proceedingChapter

Abstract

We describe the gauge-theoretic approach to transformations in integrable geometry through discussion of two classical examples: surface of constant negative Gauss curvature and isothermic surfaces.
Original languageEnglish
Title of host publicationSpecial Metrics and Group Actions in Geometry
Subtitle of host publicationSINDAMS, volume 23
PublisherSpringer
Pages59-80
ISBN (Electronic)978-3-319-67519-0
ISBN (Print)978-3-319-67518-3
DOIs
Publication statusPublished - 23 Oct 2017

Fingerprint

Gauss Curvature
Negative Curvature
Gauge

Cite this

Burstall, F. (2017). Notes on transformations in integrable geometry. In Special Metrics and Group Actions in Geometry: SINDAMS, volume 23 (pp. 59-80). Springer. https://doi.org/10.1007/978-3-319-67519-0_3

Notes on transformations in integrable geometry. / Burstall, Francis.

Special Metrics and Group Actions in Geometry: SINDAMS, volume 23. Springer, 2017. p. 59-80.

Research output: Chapter in Book/Report/Conference proceedingChapter

Burstall, F 2017, Notes on transformations in integrable geometry. in Special Metrics and Group Actions in Geometry: SINDAMS, volume 23. Springer, pp. 59-80. https://doi.org/10.1007/978-3-319-67519-0_3
Burstall F. Notes on transformations in integrable geometry. In Special Metrics and Group Actions in Geometry: SINDAMS, volume 23. Springer. 2017. p. 59-80 https://doi.org/10.1007/978-3-319-67519-0_3
Burstall, Francis. / Notes on transformations in integrable geometry. Special Metrics and Group Actions in Geometry: SINDAMS, volume 23. Springer, 2017. pp. 59-80
@inbook{ee8fcd8f1c734820ae7ae96b03f1f947,
title = "Notes on transformations in integrable geometry",
abstract = "We describe the gauge-theoretic approach to transformations in integrable geometry through discussion of two classical examples: surface of constant negative Gauss curvature and isothermic surfaces.",
author = "Francis Burstall",
year = "2017",
month = "10",
day = "23",
doi = "10.1007/978-3-319-67519-0_3",
language = "English",
isbn = "978-3-319-67518-3",
pages = "59--80",
booktitle = "Special Metrics and Group Actions in Geometry",
publisher = "Springer",

}

TY - CHAP

T1 - Notes on transformations in integrable geometry

AU - Burstall, Francis

PY - 2017/10/23

Y1 - 2017/10/23

N2 - We describe the gauge-theoretic approach to transformations in integrable geometry through discussion of two classical examples: surface of constant negative Gauss curvature and isothermic surfaces.

AB - We describe the gauge-theoretic approach to transformations in integrable geometry through discussion of two classical examples: surface of constant negative Gauss curvature and isothermic surfaces.

UR - https://doi.org/10.1007/978-3-319-67519-0_3

U2 - 10.1007/978-3-319-67519-0_3

DO - 10.1007/978-3-319-67519-0_3

M3 - Chapter

SN - 978-3-319-67518-3

SP - 59

EP - 80

BT - Special Metrics and Group Actions in Geometry

PB - Springer

ER -