Non-commutativity in polar coordinates

James Edwards

Research output: Working paper

Abstract

We reconsider the fundamental commutation relations for non-commutative
$\mathbb{R}^{2}$ described in polar coordinates with non-commutativity
parameter $\theta$. Previous analysis found that the natural transition from
Cartesian coordinates to polars led to a representation of $\left[\hat{r},
\hat{\varphi}\right]$ as an everywhere diverging series. We compute the Borel
resummation of this series, showing that it can subsequently be extended
throughout parameter space and hence provide an interpretation of this
commutator. Our analysis provides a complete solution for arbitrary $r$ and
$\theta$ that reproduces the earlier calculations at lowest order. We compare
our results to previous literature in the (pseudo-)commuting limit, finding a
surprising spatial dependence for the coordinate commutator when $\theta \gg
r^{2}$. We raise some questions for future study in light of this progress.
Original languageEnglish
Publication statusE-pub ahead of print - 18 Jul 2016

Keywords

  • Non-commutative
  • Borel resummation
  • Quantum field theory

Fingerprint Dive into the research topics of 'Non-commutativity in polar coordinates'. Together they form a unique fingerprint.

  • Cite this