Noise and selectivity of velocity-selective multi-electrode nerve cuffs

N Donaldson, R Rieger, M Schuettler, John Taylor

Research output: Contribution to journalArticlepeer-review

31 Citations (Scopus)

Abstract

Using a multi-electrode nerve-signal recording cuff and a method of signal processing described previously, activity in axons with different propagation velocities can be distinguished, and the relative amplitude of the small-fibre signals increased. This paper is, largely, an analysis of the selectivity and noise of this system though impedance measurements from an actual cuff are included. The signal processor includes narrow band-pass filters. It is shown that the selectivity and noise both increase with the centre frequencies of these filters. A convenient approach is to make the filter frequencies inversely related to the artificial time delays so that the filter ‘Q’s are approximately constant and the noise densities are equal for all velocity filters. Numerical calculations, using formulae for this system and for the conventional tripole, based on a fixed cuff size and tissue resistivity, find the number of action potentials per second that must pass through the cuff so that the signal power equals the noise power. For slow fibres (20 m/s), the rate is 14 times lower for the multi-electrode cuff than the tripole, a significant advantage for recording from these fibres.
Original languageEnglish
Pages (from-to)1005-1018
Number of pages14
JournalMedical and Biological Engineering and Computing
Volume46
Issue number10
Early online date11 Aug 2008
DOIs
Publication statusPublished - 1 Oct 2008

Fingerprint Dive into the research topics of 'Noise and selectivity of velocity-selective multi-electrode nerve cuffs'. Together they form a unique fingerprint.

Cite this