New singularities for Stokes waves

Samuel C. Crew, Philippe H. Trinh

Research output: Contribution to journalArticlepeer-review

11 Citations (SciVal)


In 1880, Stokes famously demonstrated that the singularity that occurs at the crest of the steepest possible water wave in infinite depth must correspond to a corner of . Here, the complex velocity scales like where is the complex potential. Later in 1973, Grant showed that for any wave away from the steepest configuration, the singularity moves into the complex plane, and is of order (Grant J. Fluid Mech., vol. 59, 1973, pp. 257–262). Grant conjectured that as the highest wave is approached, other singularities must coalesce at the crest so as to cancel the square-root behaviour. Despite recent advances, the complete singularity structure of the Stokes wave is still not well understood. In this work, we develop numerical methods for constructing the Riemann surface that represents the extension of the water wave into the complex plane. We show that a countably infinite number of distinct singularities exist on other branches of the solution, and that these singularities coalesce as Stokes’ highest wave is approached.
Original languageEnglish
Pages (from-to)256-283
Number of pages28
JournalJournal of Fluid Mechanics
Early online date31 May 2016
Publication statusPublished - 10 Jul 2016


Dive into the research topics of 'New singularities for Stokes waves'. Together they form a unique fingerprint.

Cite this