New rhenium-tricarbonyl complexes bearing halogen-substituted bidentate ligands: Structural, computational and Hirshfeld surfaces studies

Reza Kia, Soheil Mahmoudi, Paul Raithby

Research output: Contribution to journalArticle

2 Citations (Scopus)
17 Downloads (Pure)

Abstract

A series of ten rhenium tricarbonyl complexes (C1-C10), bearing halogen-substituted bidentate N,N-donor ligands with halogens or trifluoromethyl groups (X = -F, -Cl, -Br, and -CF 3) in different positions on the aromatic rings were synthesized and characterized by FT-IR and 1H-NMR spectroscopy and their solid-state structures were determined by single crystal X-ray diffraction. The resultant complexes Re(CO) 3(N,N)X display an octahedral coordination geometry around the central Re atom, and in all the complexes the Re(CO) 3 unit adopts a fac geometry. The metal-bound halogen atoms along with the halogen-substituted ligands were used to fine-tune the electron density of the halogen σ-hole on the coordinated halide that is involved in halogen-halogen and other intermolecular interactions. This series of compounds was used to explore the range of possible intermolecular interactions involving rhenium coordinated halides. These supramolecular interactions include: (i) halogen bonding through the metal-bound halogen with the carbon-bound halogen (Re-X⋯X-C), (ii) halogen bonding through the carbon-bound halogen with another carbon-bound halogen (C-X⋯X-C), (iii) dipolar interactions through carbonyl-carbonyl (CO⋯CO), (iv) C-H⋯X hydrogen bonding interactions, (v) C-H⋯O hydrogen bonding interactions, (vi) halogen (X)⋯heteroatom (N, O) interactions and (vii) metal-bond carbonyl lone pair with aromatic π-ring interaction, Re-CO(lone pair)⋯π(aromatic ring). In each case the molecular electrostatic potential and non-covalent interaction index were calculated. Crystal packing analyses using Hirshfeld surface calculation confirmed that metal-bound halogen is more effective than carbon-bound halogen in the formation of intermolecular interactions. Complexes C8 and C10 featured interesting intramolecular Re-CO(lone pair)⋯π interactions, the presence of which were confirmed by molecular orbital and non-covalent interaction index (NCI) calculations.

Original languageEnglish
Pages (from-to)77-93
Number of pages17
JournalCrystEngComm
Volume21
Issue number1
Early online date4 Dec 2018
DOIs
Publication statusPublished - 7 Jan 2019

ASJC Scopus subject areas

  • Chemistry(all)

Cite this

New rhenium-tricarbonyl complexes bearing halogen-substituted bidentate ligands: Structural, computational and Hirshfeld surfaces studies. / Kia, Reza; Mahmoudi, Soheil; Raithby, Paul.

In: CrystEngComm, Vol. 21, No. 1, 07.01.2019, p. 77-93.

Research output: Contribution to journalArticle

@article{10de413c74574922a1f835e91a071ac8,
title = "New rhenium-tricarbonyl complexes bearing halogen-substituted bidentate ligands: Structural, computational and Hirshfeld surfaces studies",
abstract = "A series of ten rhenium tricarbonyl complexes (C1-C10), bearing halogen-substituted bidentate N,N-donor ligands with halogens or trifluoromethyl groups (X = -F, -Cl, -Br, and -CF 3) in different positions on the aromatic rings were synthesized and characterized by FT-IR and 1H-NMR spectroscopy and their solid-state structures were determined by single crystal X-ray diffraction. The resultant complexes Re(CO) 3(N,N)X display an octahedral coordination geometry around the central Re atom, and in all the complexes the Re(CO) 3 unit adopts a fac geometry. The metal-bound halogen atoms along with the halogen-substituted ligands were used to fine-tune the electron density of the halogen σ-hole on the coordinated halide that is involved in halogen-halogen and other intermolecular interactions. This series of compounds was used to explore the range of possible intermolecular interactions involving rhenium coordinated halides. These supramolecular interactions include: (i) halogen bonding through the metal-bound halogen with the carbon-bound halogen (Re-X⋯X-C), (ii) halogen bonding through the carbon-bound halogen with another carbon-bound halogen (C-X⋯X-C), (iii) dipolar interactions through carbonyl-carbonyl (CO⋯CO), (iv) C-H⋯X hydrogen bonding interactions, (v) C-H⋯O hydrogen bonding interactions, (vi) halogen (X)⋯heteroatom (N, O) interactions and (vii) metal-bond carbonyl lone pair with aromatic π-ring interaction, Re-CO(lone pair)⋯π(aromatic ring). In each case the molecular electrostatic potential and non-covalent interaction index were calculated. Crystal packing analyses using Hirshfeld surface calculation confirmed that metal-bound halogen is more effective than carbon-bound halogen in the formation of intermolecular interactions. Complexes C8 and C10 featured interesting intramolecular Re-CO(lone pair)⋯π interactions, the presence of which were confirmed by molecular orbital and non-covalent interaction index (NCI) calculations.",
author = "Reza Kia and Soheil Mahmoudi and Paul Raithby",
year = "2019",
month = "1",
day = "7",
doi = "10.1039/C8CE01860J",
language = "English",
volume = "21",
pages = "77--93",
journal = "CrystEngComm",
issn = "1466-8033",
publisher = "Royal Society of Chemistry",
number = "1",

}

TY - JOUR

T1 - New rhenium-tricarbonyl complexes bearing halogen-substituted bidentate ligands: Structural, computational and Hirshfeld surfaces studies

AU - Kia, Reza

AU - Mahmoudi, Soheil

AU - Raithby, Paul

PY - 2019/1/7

Y1 - 2019/1/7

N2 - A series of ten rhenium tricarbonyl complexes (C1-C10), bearing halogen-substituted bidentate N,N-donor ligands with halogens or trifluoromethyl groups (X = -F, -Cl, -Br, and -CF 3) in different positions on the aromatic rings were synthesized and characterized by FT-IR and 1H-NMR spectroscopy and their solid-state structures were determined by single crystal X-ray diffraction. The resultant complexes Re(CO) 3(N,N)X display an octahedral coordination geometry around the central Re atom, and in all the complexes the Re(CO) 3 unit adopts a fac geometry. The metal-bound halogen atoms along with the halogen-substituted ligands were used to fine-tune the electron density of the halogen σ-hole on the coordinated halide that is involved in halogen-halogen and other intermolecular interactions. This series of compounds was used to explore the range of possible intermolecular interactions involving rhenium coordinated halides. These supramolecular interactions include: (i) halogen bonding through the metal-bound halogen with the carbon-bound halogen (Re-X⋯X-C), (ii) halogen bonding through the carbon-bound halogen with another carbon-bound halogen (C-X⋯X-C), (iii) dipolar interactions through carbonyl-carbonyl (CO⋯CO), (iv) C-H⋯X hydrogen bonding interactions, (v) C-H⋯O hydrogen bonding interactions, (vi) halogen (X)⋯heteroatom (N, O) interactions and (vii) metal-bond carbonyl lone pair with aromatic π-ring interaction, Re-CO(lone pair)⋯π(aromatic ring). In each case the molecular electrostatic potential and non-covalent interaction index were calculated. Crystal packing analyses using Hirshfeld surface calculation confirmed that metal-bound halogen is more effective than carbon-bound halogen in the formation of intermolecular interactions. Complexes C8 and C10 featured interesting intramolecular Re-CO(lone pair)⋯π interactions, the presence of which were confirmed by molecular orbital and non-covalent interaction index (NCI) calculations.

AB - A series of ten rhenium tricarbonyl complexes (C1-C10), bearing halogen-substituted bidentate N,N-donor ligands with halogens or trifluoromethyl groups (X = -F, -Cl, -Br, and -CF 3) in different positions on the aromatic rings were synthesized and characterized by FT-IR and 1H-NMR spectroscopy and their solid-state structures were determined by single crystal X-ray diffraction. The resultant complexes Re(CO) 3(N,N)X display an octahedral coordination geometry around the central Re atom, and in all the complexes the Re(CO) 3 unit adopts a fac geometry. The metal-bound halogen atoms along with the halogen-substituted ligands were used to fine-tune the electron density of the halogen σ-hole on the coordinated halide that is involved in halogen-halogen and other intermolecular interactions. This series of compounds was used to explore the range of possible intermolecular interactions involving rhenium coordinated halides. These supramolecular interactions include: (i) halogen bonding through the metal-bound halogen with the carbon-bound halogen (Re-X⋯X-C), (ii) halogen bonding through the carbon-bound halogen with another carbon-bound halogen (C-X⋯X-C), (iii) dipolar interactions through carbonyl-carbonyl (CO⋯CO), (iv) C-H⋯X hydrogen bonding interactions, (v) C-H⋯O hydrogen bonding interactions, (vi) halogen (X)⋯heteroatom (N, O) interactions and (vii) metal-bond carbonyl lone pair with aromatic π-ring interaction, Re-CO(lone pair)⋯π(aromatic ring). In each case the molecular electrostatic potential and non-covalent interaction index were calculated. Crystal packing analyses using Hirshfeld surface calculation confirmed that metal-bound halogen is more effective than carbon-bound halogen in the formation of intermolecular interactions. Complexes C8 and C10 featured interesting intramolecular Re-CO(lone pair)⋯π interactions, the presence of which were confirmed by molecular orbital and non-covalent interaction index (NCI) calculations.

UR - http://www.scopus.com/inward/record.url?scp=85058899736&partnerID=8YFLogxK

U2 - 10.1039/C8CE01860J

DO - 10.1039/C8CE01860J

M3 - Article

VL - 21

SP - 77

EP - 93

JO - CrystEngComm

JF - CrystEngComm

SN - 1466-8033

IS - 1

ER -